
Modular Design Through Component Abstraction

David Berner, Jean-Pierre Talpin, Paul Le Guernic Sandeep Kumar Shukla

INRIA project ESPRESSO, IRISA, France Virgina Tech, USA
FirstName.LastName@irisa.fr shukla@vt.edu

ABSTRACT
Growing design sizes and shrinking time to market windows can
only be met with drastically increased productivity. One way to
obtain this is a smart reuse of intellectual property. This paper
presents a methodology for modular design with the help of com-
ponent abstraction. It describes how imperative components can
be transformed into a formal, synchronous description to provide
behavioral types to the components. The synchronous composition
of these abstracted components helps discover errors in the compo-
nent composition. The presented methodology is illustrated by the
detailed case study of a Finite Impulse Response filter. We trans-
form initial SYSTEMC modules into an intermediate static single
assignment representation which is used as a basis from which cor-
responding behavioral types are built.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and Interfaces; D.2.10 [Software Engineering]: Design—
Methodologies

General Terms
Design, Verification

Keywords
Behavioral Interfaces, Component Based Design, Synchronous Lan-
guages

1. INTRODUCTION
The ever increasing complexity of embedded systems coupled

with aggravated time constraints makes it difficult for design houses
to keep both costs and quality within bounds. Component design
and IP reuse - though identified a long time ago as possible solu-
tions for these challenges - have been missing a broad adoption.
This is mainly due to inherent problems of component reuse. Com-
ponents often are created for a special purpose, and even if they are
sufficiently general, they behave differently in different environ-
ments. A lack of pertinent interface descriptions impedes an unam-
biguous reuse. In many cases subtleties that only the component’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’04,September 22–25, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-890-3/04/0009 ...$5.00.

original developers are familiar with are indispensable for efficient
integration and testing. In this paper we address this problem by
providing components with interfaces that not only comprise the
components’ input / output signals and their types but also causal
and synchrony relations between signals. This enables more ex-
haustive checks for the compatibility of components. The descrip-
tion of interface signal dependencies can also be seen as a behav-
ioral interface. Figure 1 shows the connection of two components.
A normal type description only checks information about the data
type of the common signalsx, y, andz . As long as these types
match, the type checker will approve the composition. If A pro-
ducesx andy at the same rate but B consumes two values ofx for
each value ofy , this would go undetected. Also there is no means
to discover a combinational loop over the signalz . A behavioral
type description that holds information about the synchronization
of signals is able to detect these errors. It exhibits part of the inter-
nal functioning of the component in a data-flow synchronous for-
malism that makes it possible to formally reason about these inter-
faces. The synchronous composition of several of these behavioral
interfaces automatically reveals intricate problems in the composi-
tion of the components just as a simple type checker would find a
signal data type mismatch. Many of these errors would otherwise
remain undetected and could cause great costs and delays later in
the design process. The more behavior such an interface captures,
the more errors can be found. A system built from components
whose compositions all have been checked with the help of a be-
havioral type, can therefore be expected to function more reliably
and have a much higher overall design quality than compositions
with simple data type checks [6] - even after thorough testing.

Figure 1: Two connected components

Previous Work.The proposed work and methodology arises
from previous work on embedded systems design and verification
in the Polychrony workbench [12], a tool-set based on a multi-
clocked synchronous model of computation [13] and implemented
by the data-flow notation SIGNAL [3] and its related model-checking
tool SIGALI [14]. Using the Polychrony workbench for component-
based design has been the subject of recent studies [2], yet not
within the methodological framework of a behavioral type system
for existing structural components, which we consider here.

In [19], the use of Polychrony to describe services of the real-
time Java virtual machine is demonstrated and applied to rethread-
ing multi-task real-time Java programs by using global program
optimization algorithms provided in the workbench. In [20], the
application of this technique to system-level design is developed
by studying its application to checking behavioral conformance be-
tween embedded systems described in [9] and at heterogeneous lev-
els of abstraction. In [18], a generic translation scheme of SystemC
programs to the Polychrony workbench is presented by considering
a static single assignment intermediate representation due to the
GCC project [7].

Contribution. Our approach consists in putting the polychronous
model of computation [13] to work in the context of system-level
design languages such as SYSTEMC [16, 10]. We provide imper-
ative system components with formal behavioral interfaces in dif-
ferent levels of detail. These interfaces can be used to prove formal
properties of the components as well as on the composition of com-
ponents. We propose a technique to generically obtain formal ab-
stractions of SYSTEMC components and use the power of the syn-
chronous paradigm to formally verify the correctness of component
compositions. In particular we present a fully featured case study
detailing all steps from the analysis and translation of SYSTEMC
components to building behavioral types for these components and
synchronously composing them to detect possible flaws. As a side
note we show how these interfaces can be used to verify formal
properties of the components and their composition.

Plan. We start with Section 2, a rationale on our behavioral type
inference technique. In Section 3 we give an introduction to the
polychronous model of computation and its supporting data-flow
notation SIGNAL . Section 4 describes the general flow of our ap-
proach and the methodology as well as the principal steps and tools
it involves. In Section 5 we show how the application of this flow
with a case study on a Finite Impulse Response (FIR) filter. Af-
ter this related work is discussed in Section 6 and then the paper
concludes with Section 7.

2. RATIONALE
To allow for an easy grasp on the proposed behavioral type infer-

ence technique, we start with an outline of the analysis of impera-
tive programs in Figure 2, and the construction of behavioral types,
Figure 3. The left hand side of Figure 2 depicts an imperative code
fragment consisting of an iterative program that counts the number
of bits set to one in the variableidata. While idata is not equal to
zero, it adds its right-most bit to an output count variableocount
and shifts it right in order to process the next bit.

Static Single Assignment.The static single-assignment (SSA)
representation of this program is shown on the right hand side of
Figure 2 and consists of three blocks. The block labeledL1 waits
for the eventstart before initializing the local state variableidata
to the value of the input signaldata and the variableicount to 0.
LabelL2 corresponds to a loop that shiftsidata right and adds its
right-most bit toicount until termination (conditionT2). Finally,
in the blockL3, icount is sent to the signalocount. Before going
back toL1 thedone event is emitted.

All variables (idata andocount) are read and written once per
cycle. LabelL2 is the entry point of the SSA block associated with
the while loop. The first instruction loads the input variableidata
into the registerT1. The second instruction stores the result of
its comparison with0 in the registerT0. If T0 is true, control is

wait (start);
idata = data;
icount = 0;
while (idata != 0) {

ocount = ocount
+ (idata & 1);

idata = idata >> 1;
}
ocount = icount;
notify (done);

L1:wait (start);
idata = data;
icount = 0;
goto L2;

L3:notify (done);
ocount = icount;
goto L1;

L2:T1 = idata;
T0 = T1 = 0;
if T0 then goto L3;
T2 = ocount;
T3 = T1 & 1;
ocount = T2 + T3;
idata = T1 >> 1;
goto L2;

Figure 2: From C-like programs to static single assignment

passed to blockL3. Otherwise, the next instruction is executed: the
variableocount is loaded intoT2, the last bit ofT1 is loaded into
T3, the sum ofT2 andT3 is assigned toocount and the right-shift
of T1 is assigned toidata. Finally, the block terminates with an
unconditional branch back to labelL2.

Behavioral Type Inference.Let us zoom on the blockL2 in
the example of Figure 3. The behavioral type of the blockL2 on
the right hand side consists of the simultaneous composition of log-
ical propositions that form the behavioral type of the block. Each
proposition is associated with one instruction: it is an equation that
specifies itsinvariants. In particular, it tells when the instruction
is executed, what it computes, when it passes control to the next
statement, when it branches to another block.

The instructionT1 = idata on the left hand side is associated
with the partial equationT1 ::= idata$1 when L2$1 on the
right. It means that, if the labelL2 is being executed, thenT1 is
equal toidata$1 (the operator$1 refers to the value of the variable
during the previous cycle). Next, consider instructionif T2
goto L3 . It corresponds to the partial equationL3 ::= true
when T2. This means that control is passed toL3 whenT2 is true.
Instructions that follow are conditioned by the negativenot T2

which means: ”in the blockL2 and not in its branch going toL3”.

L2: T1 = idata;
T2 = T1 == 0;
if T2 goto L3;
T3 = icount;

T1 ::= idata$1 when L2$1
| T2 ::= T1 = 0 when L2$1
| L3 ::= true when T2
| T3 ::= icount$1 when not T2

Figure 3: From static single assignment to data-flow equations

Figure 4 depicts the translation of operations in blockL2 . The
assignment oficount to the local variableT3 is translated by
the partial equationT3 ::= icount$1 when not T2 which
assigns the previous value oficount to the temporary variableT3
at the clocknot T2 (i.e. whenT1 is not0, see Figure 3).

T3 = icount;
T4 = T1 & 1;
icount = T3 + T4;
idata = T1 >> 1;

T3 ::= icount$1 when not T2
| T4 ::= T1 & 1 when not T2
| icount ::= T3 + T4 when not T2
| idata ::= T1 >> 1 when not T2

Figure 4: Translation of primitive operations

Types for Predefined Protocols.Consider the wait-notify
protocol at blocksL1 andL3, Figure 5. The wait instruction re-
ceives control at the clockxL1. If the value ofstart changes (i.e.
when not T0) thenicount andidata are initialized and con-
trol is passed to the blockL2. Otherwise, at the clockwhen T0, a
transition back toL1 is scheduled.

L1: wait (start);
...

L3: notify (done);
...

T1 ::= start=start$1 when L1$1
| L1 ::= true when T1

...
| done ::= not done$1 when L3$1

...

Figure 5: Modeling communication protocols

Completion.All entry clocksxL are simultaneously present when
a block is executed. Each signalxL holds the value1 iff the block
L is active during a transition currently being executed. Otherwise,
xL is set toL ::= defaultvalue false . The same holds
for local variablesT with T ::= defaultvalue T$1 . The
SIGNAL compiler guarantees the completion of the next-state logic
by aggregating partial equations.

L1 := true when (T1 default L3$1) default false
| L2 := true when (L1b$1 default not T3)

default false
| L3 := true when T3 default false

Additional Remarks.The proposed inference technique is mod-
ular (block-wise), conceptually simple (one equation per instruc-
tion) and language independent (SSA is the input formalism). The
host formalism SIGNAL supports a scalable notion and a flexible
degree of abstraction. Notice that the structure of the original pro-
gram is represented by program labelsL, which play an essential
role during modeling as they represent clocks, i.e. the data-structure
used by the POLYCHRONY workbench to represent the control flow
of programs. This information is propagated during modeling, ver-
ification and transformation. As a result, traceability is easily pro-
vided by this information to relate an error to its original block, in
addition to the name of all variables it implies.

3. A MODEL OF POLYCHRONY
We start with a brief overview of the polychronous model of

computation [13]. We consider a partially-ordered set(T ,≤, 0)
of tags. A tagt ∈ T denotes a symbolic period in time. The re-
lation≤ denotes a partial order. Its minimum is noted0. We note
C ∈ C achainof tags (a totally ordered subset ofT). We define:

- anevente ∈ E = T × V by the pair of a value and a tag,
- asignals ∈ S = C → V by a function from achainto values,
- abehaviorb ∈ B = X ⇀ S by a map from names to signals,
- aprocessp ∈ P by a set of behaviors of the same domain.

Figure 6 depicts a behaviorb over three signals namedx, y, andz
in the domain of polychrony. Two frames depict timing domains
formalized by chains of tags. Signalsx andy belong to the same
timing domain: x is a down-sampling ofy. Its events are syn-
chronous to odd occurrences of events alongy and share the same
tags, e.g.t1. Even tags ofy, e.g.t2, are ordered along its chain, e.g.
t1 < t2, but absent fromx. Signalz belongs to a different timing
domain. Its tags, e.g.t3 are not ordered with respect to the chain of
y, e.g.t1 6≤ t3 andt3 6≤ t1.

x : •t1 • •
y : •t1 •t2 • • •
z : •t3 • • •

Figure 6: A multi-clocked behavior

In the remainder, we writetags(s) for the tags of a signals,
b|X for the projection of a behaviorb on X ⊂ X and b/X =
b|vars(b)\X for its complementary,vars(b) andvars(p) for the do-
mains ofb andp. We writeB|X for the set of all behaviors de-
fined on the set of variablesX. Synchronous composition is noted
p || q and is defined by the union of all behaviorsb (from p) andc
(from q) that are synchronous: all signals they share, i.e. inI =
vars(p) ∩ vars(q), are equal.

p || q = {b ∪ c | (b, c) ∈ p× q, I = vars(p) ∩ vars(q), b|I = c|I }

A Polychronous Programming Model.In the POLYCHRONY

workbench, the polychronous model of computation is implemented
by the multi-clocked synchronous data-flow notation SIGNAL [3].
It serves as the specification formalism used for the case study of
the present article. In SIGNAL , a processP consists of the com-
position of simultaneous equationsx := f(y, z) or x := y f z
over input signalsy, z and output signalsx. A signalx ∈ X is a
possibly infinite flow of valuesv ∈ V sampled at a clock notedˆ x.

P, Q ::= x := y f z | P/x | P ||Q (SIGNAL process)

In the polychronous model of computation, Section 3, the denota-
tion of a clockˆ x is the domain of the signal associated tox: a
chain of tags. We note[[P]] for the denotation of a processP . The
synchronous composition of processesP ||Q consists of the simul-
taneous solution of the equations inP and inQ. The processP/x
restricts the signalx to the lexical scope ofP .

[[P ||Q]] = [[P]] || [[Q]] and[[P/x]] = [[P]]/x

An equationx := y f z denotes a relation between the input sig-
nalsy andz and an output signalx by a combinatorf . An equa-
tion is usually a ternary and infixed relation notedx := y f z but
it can in general be anm + n-ary relation noted(x1, . . . xm) :=
f(y1, . . . yn). SIGNAL requires three primitive combinators to per-
form delayx := y$1 init v, samplingx := y when z and merge
x = y default z. The equationx := y$1 init v initially de-
fines the signalx by the valuev and then by the previous value of
the signaly. The signaly and its delayed copyx := y$1 init v are
synchronous: they share the same set of tagst1, t2, Initially,
at t1, the signalx takes the declared valuev and then, at tagtn, the
value ofy at tagtn−1.

y •t1,v1 •t2,v2 •t3,v3 . . .
(x := y$1 init v) x •t1,v •t2,v1 •t3,v2 . . .

The equationx := y default z definesx by y wheny is present
and byz otherwise. Ify is absent andz present withv1 at t1 then
x holds(t1, v1). If y is present (att2 or t3) thenx holds its value
whetherz is present (att2) or not (att3).

y •t2,v2 •t3,v3 . . .↓ ↓
(x := y default z) x •t1,v1 •t2,v2 •t3,v3 . . .↑

z •t1,v1 • . . .

The equationx := y when z definesx by y whenz is true (and
bothy andz are present);x is present with the valuev2 at t2 only
if y is present withv2 at t2 and if z is present att2 with the value
true. When this is the case, one needs to schedule the calculation
of y andz beforex, as depicted byyt2 → xt2 ← zt2 .

y • •t2,v2 . . .↓
(x := y when z) x •t2,v2 . . .↑

z • •t1,0 •t2,1 . . .

Relating Polychronous Signals with Clocks.In SIGNAL ,
the presence of a value along a signalx is the proposition noted
ˆ x that is true whenx is present and that is absent otherwise. The
syntax of clock expressionse and clock relationsE is a particular
subset of SIGNAL that is defined by the induction grammare. The
clock expression̂x can be defined by the Boolean operationx = x
(i.e. y := ˆ x=defy := (x = x)). Referring to the polychronous
model of computation, it represents the set of tags at which the
signal holds a value. Clock expressions naturally represent control,
the clock[x] represents the time tags at which the Boolean signal
x is present and true (i.e.y := [x]=defy := 1 when x). The clock
[notx] represents the time tags at which the Boolean signalx is
present and false. We write0 for the empty clock (it has no tags).

e ::= ˆ x | [x] | [notx] | e ˆ+ e′ | e ˆ- e′ | e ˆ* e′ | 0

A clock constraintE is a SIGNAL process. The constrainteˆ = e′

synchronizes the clockse and e′. It corresponds to the process
(x := (e = e′))/x. CompositionE ||E′ corresponds to the union
of constraints and restrictionE/x to the existential quantification
of E by x. A transitive scheduling constraintx→ y when e spec-
ifies the order of execution betweenx andy at the clocke.

E ::= () | eˆ = e′ | eˆ < e′ | x→ y when e | E ||E′ | E/x

Each processP corresponds to a clock constraintE defined by the
clock inference systemP : E of Figure 7.

x := y$1 init v : ˆ xˆ = ˆ y
x := y when z : ˆ xˆ = ˆ y [z] || y → x when z

x := y default z : ˆ xˆ = ˆ y ˆ+ ˆ z || z → x when (ˆ z ˆ- ˆ y)
|| y → x when ˆ x

P : E Q : E′

P ||Q : E ||E′
P : E

P/x : E/x

Figure 7: Clock inference system

Code Generation via Hierarchization.The clock constraints
E of a processP hold the necessary information to generate a
sequential control-flow graph starting from a multi-clocked syn-
chronous specification by a technique of hierarchization, proposed
in [1]. It can be outlined by considering a simple SIGNAL program,
Figure 8. Processbuffer implements two functionalities. One is
the processcurrent . It defines acell in which values are stored
at the input clock̂ i and loaded at the output clockˆo . cell is a
predefined SIGNAL operation defined by:

x := y cell z init v
def
= (|| m := x$1 init v

|| x := y default m
|| ˆ xˆ = ˆ y ˆ+ ˆ z
||) /m

The other functionality is the processalternate that desynchro-
nizes the signalsi ando by synchronizing them to the true and
false values of an alternating Boolean signalb.

Clock inference (Figure 9) applies the clock inference system of
Figure 7 to the processbuffer to determine three synchronization
classes. We observe thatb, c b, zb, andzo are synchronous
and define the master clock synchronization class ofbuffer . There
are two other synchronization classes,c i and c o, that corre-
spond to the true and false values of the Boolean flip-flop variable
b, respectively.

process buffer = (? i ! o)
(| alternate (i, o) | o := current (i)

|) where
process alternate = (? i, o !)

(| zb := b$1 init true
| b := not zb
| o ˆ= when not b
| i ˆ= when b
|) / b, zb;

process current = (? i ! o)
(| zo := i cell ˆo init false

| o := zo when ˆo
|) / zo;

Figure 8: Polychronous specification of a buffer

(| c_b ˆ= b
| b ˆ= zb
| zb ˆ= zo
| c_i := when b
| c_i ˆ= i
| c_o := when not b

| c_o ˆ= o
| i -> zo when ˆi
| zb -> b
| zo -> o when ˆo
|) / zb, zo, c_b,

c_o, c_i, b;

Figure 9: Clock analysis of the buffer

This defines three nodes in the control-flow graph of the gener-
ated code shown in Figure 10. At the main clockc b, b, andc o
are calculated fromzb . At the sub-clockb, the input signali is
read. At the sub-clockc o the output signalo is written. Finally,
zb is determined. Notice that the sequence of instructions follows
the scheduling constraints determined during clock inference.

buffer_iterate () {
b = !zb;
c_o = !b;
if (b) {

if (!r_buffer_i(&i))
return FALSE;

}

if (c_o) {
o = i;
w_buffer_o(o);

}
zb = b;
return TRUE;

}

Figure 10: Buffer code generation

Some More Concrete Syntax.In addition to the core syn-
tax of SIGNAL presented so far, we make extensive use of process
declarations and partial equations for the purpose of modeling our
case study. In SIGNAL , a partial equationx ::= y f z when e is
the partial definition of the variablex by the operationy f z at the
clock denoted by the expressione. The default equationx ::=
defaultvalue v defines the value of the variablex when it is
present but no corresponding partial equationx ::= y f z when e
applies (becausee is absent). Letx be a variable defined usingn
partial equations and a default valuev:

x ::= x1 when e1...
|| x ::= xn when en

|| x ::= defaultvalue v

The SIGNAL compiler processes this definition by first checking
the clock expressionse1, . . . en mutually exclusive and then han-
dling the definition as the equivalent equation:x := (x1 when e1)
default . . . (xn when en) default v. The declaration of a pro-
cessP of namef , input signalsx1..xm, output signalsxm+1..xn

is notedprocess f = (? x1, . . . xm ! xm+1, . . . xn) (|P |);. Once

declared, processf may be called with its actual parametersy1..yn

by (ym+1, . . . yn) := f(y1, . . . ym) and behave asP with x1..xn

substituted byy1..yn. A variant declaration is that of a foreign
function f , accessible, e.g. from a separately compiled C library.
Its call can be wrapped into SIGNAL by declaring its interface and
by declaring an abstractionE of its behavior, which consists of
scheduling and clock constraints.

process f = (? x1, . . . xm ! x) spec (|E |)
pragmas C CODE”&x = f(&x1, . . . &xm)”
end pragmas;

4. METHODOLOGY AND TOOLS
Our modeling and verification methodology starts off with a SYS-

TEMC model of a system. The goal is to provide all system com-
ponents with a formal behavioral type that can be used to discover
errors in the composition of components. The formal type can also
be used to formally verify properties of the components and their
composition. The methodology consists of several steps. First the
SYSTEMC code is analyzed in a preprocessing step and some types
are replaced for better conversion results. Then a static single as-
signment intermediate representation is generated. From this rep-
resentation, clock and scheduling relations are extracted that serve
as a basis for the generation of SIGNAL code. The compilation of
the signal code performs static checking for types, dependencies,
and clock constraints. This results in a highly reliable connection
of components as the synchronous composition - once successfully
performed - rules out many sources of error that are not checked
for in a common type checking system.

As the SIGNAL program represents a formal model, also dy-
namic properties can be checked for, reaching into formal veri-
fication with reasonably small additional effort. For the model
checker we use, the model has to be abstracted or transformed into
a Boolean version. The remainder of this section describes some of
the tools used throughout the process. In Section 5 all of these steps
can be followed more in detail for the example of an FIR filter.

Static Single Assignment Form and GIMPLE.As SYS-
TEMC programs are written in C++, they can contain very complex
constructs, which make it difficult to obtain a corresponding SIG-
NAL representation. It is obvious that it would be much easier to
make a translation from a more low level representation or from a
C++ subset that adheres to some rules of simplicity. Not wanting
to restrict the input language, we are using an intermediate repre-
sentation that fits our needs.

GIMPLE [15] is a simple intermediate representation developed
at McGill University [11] and has now been adopted in the Gnu
Compiler Collection (GCC) [8]. GIMPLE is a three address C-
like language with no high level control structures. Some of its
particularities are that GIMPLE statements - with the exception of
function calls - contain not more than three operands and have no
side effects, intermediate values are stored in temporary variables,
and all control structures are lowered to conditional gotos.

Most of the GCC optimization passes use the data flow infor-
mation provided by the static single assignment form (SSA) [4].
This is an intermediate representation in which every variable is as-
signed exactly once. It is particularly used for high level compiler
optimization. This makes it particularly useful for our purpose,
since static single assignments have a very regular structure, can be
easily manipulated by automatic program analysis tools, and find a
quite natural translation into the SIGNAL synchronous formalism.

GIMPLE and SSA are part of the Tree-SSA [7] changes that have
been integrated into the Gnu Compiler Collection (GCC) starting

from version 3.5 that - at the time of writing - has yet to be released.
These changes allow for language independent, higher level opti-
mization passes. By using GIMPLE-SSA as an intermediate repre-
sentation for the behavioral type generation, we can therefore ben-
efit from all current and future optimization passes implemented
in the GCC. GIMPLE-SSA code can be dumped with compiler
options corresponding to different levels of optimization, such as
-fdump-tree-ssa , -fdump-tree-gimple and-fdump-
tree-optimized . The last option gives the best results. When
further automating the type extraction process, the tree representa-
tion of GCC can be used directly in shared memory without having
to dump it to disc and to read it again.

Formal Verification of Component Properties.Before
code from a SIGNAL program is generated, the SIGNAL compiler
checks for static problems such as contradictory clock constraints,
cycles, and zero clocks. However, in order to check dynamic prop-
erties of the system, the SIGNAL companion model checker SI-
GALI [14] can be used. Given a formal model of a system in SIG-
NAL , SIGALI can verify formal properties of the model. It is an
interactive tool specialized on algebraic reasoning inZ/3Z logic.

SIGALI transforms SIGNAL programs into sets of dynamic poly-
nomial equations that basically describe an automaton. It can ana-
lyze this automaton and prove properties such as liveness, reacha-
bility, and deadlock. The fact that it is solely reasoning on aZ/3Z
logic constrains the conditions to the Boolean data type (true, false,
absent). This is practical in the sense that true numerical verifi-
cation very soon would result in state spaces that are no longer
manageable, however it requires, depending on the nature of the
underlying model, major or minor modifications prior to formal
verification.

For many properties numerical values are not needed at all and
can be abstracted away thus speeding up verification. When ver-
ification of numerical manipulations is sought, an abstraction to
several Boolean values suffices in most cases to satisfy the needs.

5. CASE STUDY OF AN FIR FILTER
This section exemplifies the presented approach with the design

of a finite impulse response filter (FIR). It details the decomposition
of a full featured SYSTEMC specification into an SSA representa-
tion. The different analysis steps are demonstrated down to the final
typed SIGNAL representation.

As a starting point, we use the SYSTEMC model of the FIR
from the SYSTEMC 2.0.1 distribution [16] and translate it into SSA
code. We show how this SSA code is analyzed and how clock and
scheduling information can be extracted. In Section 5 the corre-
sponding SIGNAL type is presented and it is shown how to obtain
it with the preceding information.

The SystemC Model.In the SYSTEMC model, the filter itself
consists of one functional block surrounded by a testbench consist-
ing of a Stimulus that generates input values and a Display module
that receives the output and displays it on the screen (Figure 11).

The FIR unit is implemented as anSC THREAD that is triggered
on the positive clock edge. The other blocks areSC METHODs. The
left hand side of Figure 12 displays the SYSTEMC code of the en-
try function for the FIR block. The first 10 lines just handle the
initialization of variables. Then there is an infinitewhile loop that
contains the actual filter functionality.

Roughly speaking, it waits until there is a valid input available,
reads this input, processes it, writes it to an output, and then noti-
fies its environment that the result is available. At the end of each

Figure 11: Structure of the FIR filter with testbench

while loop it suspends itself until the next positive clock edge. The
FIR result is the sum of the last 15 input values weighted with 15
coefficients. This is done in twofor loops. The first one does the
weighting and the second one is shifting the buffer array containing
the last inputs.

Communication with the environment is done viaenablesignals.
The Stimulus indicates with the signalin valid that a new value is
available. In the same way, the Display is sensitive to the variable
outputdata readythat is set when a new output value is available.

Obtaining a GIMPLE-SSA Representation.The right hand
side of Figure 12 shows the GIMPLE-SSA code that corresponds
to the SYSTEMC FIR. For the generation of a clean GIMPLE-SSA
representation we follow three steps. First, preprocessing of the
SYSTEMC code, second, translation to GIMPLE-SSA with GCC,
and third, post processing of the generated GIMPLE-SSA code.
The direct generation of GIMPLE-SSA from SYSTEMC can be
done, but it results in very large and hardly readable code. A closer
look reveals that most of this bloating is due to the SYSTEMC types
and statements, which are implemented as macros and get trans-
lated as well. If we replace the SYSTEMC types by corresponding
C++ types, e.g.sc int is changed toint or unsigned, in a simple pre-
processing step, the size of the generated code shrinks drastically.

More complex statements such aswait(signal), however, still
cause a considerable increase of the code size compared to the orig-
inal SYSTEMC code. We decide to simply comment these out in the
SYSTEMC source so they are ignored by the compiler and can later
be taken care of separately in a post processing step.

During post processing we replace thewait(signal) statements
by corresponding SSA statements. Logically await statement is
similar to anif branch. Depending on a condition something is
executed, otherwise something else. The condition is the signal
that we are waiting for (e.g.in valid == true. If there is no signal
given, the process waits for the signal it is sensitive to (this is the
positive edge of the clock in this example).

In order to be able to execute thewait statement separately, we
have to introduce a separate label for it. As we can see on the right
hand side of Figure 12, forL1, L1a is introduced since the wait
statement is not at the beginning of the block, and forL3, there are
two additional labels,L3a andL3b because this wait statement is
in the middle of a block.

void fir::entry() {
sc int<8> tmp;
sc int<17>pro;
sc int<19>acc;
sc int<8>shift[16];
result.write(0);
out ready.write(false);

for (int i=0; i<=15; i++)
shift[i] = 0;

wait();

while(1) {
out ready.write(false);
wait until
in valid.delayed()==true;

tmp = sample.read();
acc = tmp*coefs[0];
for(int i=14; i>=0; i–) {
pro = shift[i]*coefs[i+1];
acc += pro;
};
for(int i=14; i>=0; i–)
shift[i+1] = shift[i];

shift[0] = tmp;
// write output values
result.write((int)acc);
out ready.write(true);
wait();
};
}

void fir::entry() {
int shift[16], i, acc, tmp;
i=0; goto L1;
this → result = 0;
this→output data ready = 0;

L0: shift[i]= 0
i = i + 1;

L1: t i = (i<=15)
if (t i) goto L0;
else goto L1a;

L1a:wait (clk1 pos);
L3: this→output data ready = 0;
L3a:wait until(in valid == true);
L3b:tmp = this→sample;

acc=this→coefs[0]*tmp;
i = 14;
goto L5;

L4: acc=acc+shift[i]
*this→coefs[i+1];

i = i - 1;
L5: if (i >= 0) goto L4;

else goto L6;
L6: i = 14;

goto L8;
L7: shift[i + 1] = shift[i];

i = i - 1;
L8: if (i>=0) goto L7;

else goto L9;
L9: shift[0] = tmp;

this→result = acc;
this→output data ready = 1;

L9a:wait (clk1 pos);
goto L3;

}

Figure 12: SystemC and SSA code for the FIR core

Extracting Clock and Scheduling Information.Though
slightly bigger in size, the SSA representation has several advan-
tages with respect to automated analysis and conversion: it consists
of very simple and repetitive statements, it is separated into sequen-
tial blocks without branches and where variable are assigned once.
The extracted behavioral type information can be separated into
two parts, control and data flow.

Figure 13 displays this information for the FIR in the form of
a synchronous transition system (STS, as in [18]). It consists of
propositions on clockŝx guarded by block input clocksxL to for
implicationsxL ⇒ ˆ x and of proposition on state transitions of
the forme ⇒ x′L to mean that ife is present thenxL is the next
block to be executed.

In order to understand how these clock relations are obtained,
we have to take a look at the SSA form in Figure 12. For instance,
xL0 ⇒ ˆ shift means that whenever block L0 is entered, the signal
shift has to be present. Transitions from one block to another are
represented like this:xL4 ⇒ xL5. However, if in the following
block a signal is assigned that has already been assigned in the
current block, it cannot be executed in the same cycle. The time
has to be advanced, this is expressed inxfir ⇒ x′L1, where the′

indicates the next value for this signal. Forif statements - such as
in block L1 - the value of a Boolean signal decides which of the
two targets is taken. Figure 14 graphically details this control flow.
There are several the small loops, such as the one between L1 and
L2, representing the manipulation of an array of values.

The big loop between L3 and L9 represents the actual program
execution loop. Everything before that deals with initialization.
After initialization the program waits for the next positive clock
edge. At the beginning of the execution it is waiting for a valid

xfir ⇒ˆ i
ˆ result
ˆ out ready
x′L1

xL0 ⇒ˆ shift
ˆ i
i → shift
x′L1

xL1 ⇒ˆ t i
ˆ i
i → t i
t i ⇒ x′L0
¬t i ⇒ x′L1a

xL1a⇒(clk1 6= clk1′)
∧ clk1 ⇒ x′L3

¬x′L3 ⇒ x′L1a
xL3 ⇒ˆ out ready

x′L3a
xL3a⇒ˆ in valid

in valid ⇒ x′L3b
¬in valid ⇒ x′L3a

xL3b⇒ˆ tmp
ˆ sample
ˆ acc
ˆ coefs
ˆ i
sample → tmp
coefs → acc
tmp → acc
x′L5

xL4 ⇒ˆ acc
ˆ shift
ˆ coefs
ˆ i
i → shift → acc
i → coefs → acc
x′L5

xL5 ⇒(i ≥ 0) ⇒ x′L4
(i < 0) ⇒ x′L6

xL6 ⇒ˆ i
x′L8

xL7 ⇒ˆ shift
ˆ i
i → shift
x′L8

xL8 ⇒ˆ i
(i ≥ 0) ⇒ x′L7
(i < 0) ⇒ x′L9

xL9 ⇒ˆ shift
ˆ tmp
ˆ result
ˆ acc
ˆ out ready
tmp → shift
acc → result
result → out ready
x′L9a

xL9a⇒(clk1 6= clk1′)
∧ clk1 ⇒ x′L3

¬x′L3 ⇒ x′L9a

Figure 13: Clock and scheduling relations for the FIR

Figure 14: Control flow of the FIR filter

input value. Then the calculations are executed and it subsequently
waits for the next positive clock edge before resuming execution at
block L3.

Data flow dependencies for the FIR are displayed on the right
hand side of Figure 13. The structure of these dependencies is very
simple, the arrow (a→b) showing thata has to be present before
b can be evaluated. Overall we see that for the FIR example, the
control part largely outweighs the data flow part. Figure 15 illus-
trates the data flow of the example. We see that for the execution
loop, the major data activity takes place in blocks L3b, L4, L7, and
L9. L3b reads the external inputscoefsandsample, L9 eventually
produces the outputsout readyandresult.

The Equivalent SIGNAL Program.As described earlier, the
combination of control and data flow can be expressed by SIGNAL

equations. In order to obtain such equations, it is helpful to have
the clock and scheduling information particularized earlier, but they
can also be obtained directly from the SSA representation to reflect
all control and data flow information. Figure 19 details the SIGNAL

equation giving the corresponding abstraction of the FIR behavior.
Translation can be done block-wise, and mostly line by line. The

SIGNAL language strictly prohibits multiple assignments of a vari-

Figure 15: Data Flow of the FIR

able within one block and at the same instant to conform with a
purely synchronous execution. Whenever there is the need to ad-
vance time before a move from one block to another, the execu-
tion of the next block is delayed using a signal delay statement

xL1 := xnL1$1 init false . HerexnL1 represents the
next value andxL1 its current value. A Variable that gets assigned
a value in more than one block would be renamed in SSA.

In SIGNAL it does not have to be renamed, instead we can use
partial equations, designated with the ”::= ”. A partial equation
defines a variable for a certain number of instants. A second or third
partial equation then can define additional instants for this variable,
as long as it is not defined twice on any instant. Since the instants
of the blocks are temporarily disjoint, a variable can be defined
once per block with the help of partial equations instead of once
per program. Two partial equations for the variableout_ready
could be distributed anywhere in the program:

out_ready ::= false when xL3
| out_ready ::= true when xL9

Still, partial equations are a source of errors since it is difficult to
make sure that they are conflict-free, and to have parts of a variable
defined in different parts of the program can also obstruct legibility.
This is why we often combine these partial equations afterward into
full equations, adding a default statement that otherwise is implied
by the compiler:

out_ready := false when xL3
default true when xL9
default false

In the code given Figure 19, six partial equations for variablei
have been combined. Assembled at one location, it is more clear to
see that the definitions do not conflict. In the FIR example, we do
not have any complex data manipulations. Would that be the case,
it would probably be unreasonably complicated to describe them in
SIGNAL . In such cases, they can be wrapped as external functions
using SIGNAL ’s pragma directive. Withpragma statements ex-
ternal code can be used directly. When the type is provided with
appropriate signal dependency and clock synchronization relations,
these functions are not completely black boxes to the system. This
pragma mechanism permits the handling of data flow intensive
applications without much additional cost.

Making a Boolean Model.As explained Section 4 the FIR
model has to be abstracted to a Boolean model in order to check
dynamic properties with the symbolic model checker SIGALI of the
POLYCHRONY workbench. Usually, it is not necessary to transform
the whole model to a binary form as we might not be interested

in all numerical details of the model, but rather some higher level
properties such as liveness or deadlock-freedom.

In the case of the FIR, however, we rewrote a binary version of
the initial model. Obviously, this blows up the model in size, so we
cannot show the whole binary model here. For this transformation
we first check where we have integer or float variables and how
they are used. In the FIR, no float variables are used. However,
the actual values of the FIR are integers. They are generated in the
stimulus, fed into the FIR and stored in a 15 stage pipeline. The
result is calculated numerically and then the output is an integer
again.

We reduce the model to binary values in several stages. At first,
we reduce the pipeline from fifteen to three stages, representing the
stages not by an integer variable, but by three Boolean variables.
The input values for the FIR are then reduced to(0, 1, 2) and also
represented by Boolean variables. Finally, the most tricky part is
the numerical calculation of the result. With the current reduction
of values and coefficients, the output of the FIR can never be greater
than 15, so we use four Boolean variables as output, interpreted as
the bits of a four bit binary number. While the total size of the
binary model in number of lines nearly doubled, the state-space
for verification only represents a fragment compared to the integer
version and is now small enough to be used for formal verification.

Using the Model Checker.Once we have a binary model of
the FIR, the model checker can be used to verify formal properties
on it. In order to do this, we have compile the SIGNAL program
with the option-z3z , which results in the generation of a file with
the extension.z3z . This is the input file for SIGALI . It contains
a model of the SIGNAL program expressed using polynomial dy-
namical equations, the data structure manipulated by SIGALI .

As an example on how to define a property for verification, signal
test3, Figure 16 is a Boolean property describing the situation that
once the system reaches blockL3 and the signalinput valid is
true, it will reach blockL9 in at most three steps. We definetest2
as an auxiliary variable that is only true betweenL3 andL9. The
state variabletest3will be true as soon as test2 has been true for
more than three cycles and there was no new value in between.

test2 := true when xL3b
default false when xL9
default test2$1 init false

test3 := true when (test2 and test2$1 and
test2$2 and test2$3)

when (input_valid$2 = false)
default test3 init false

Figure 16: Example of a formal property definition

Figure 17 depicts the interaction with the model checker. In the
first statement, the z3z file of the design is read. Then internal li-
braries are loaded. Finally we check for liveness, if property ’test3’
is reachable and if it is always false. Iftest3is not reachable and
always false, then the property holds true.

Abstraction of the SIGNAL Model.The SIGNAL program
described in appendix, Figure 19, is the model that implements the
FIR filter. It is an exact SIGNAL mirror of the original SYSTEMC
implementation. For many purposes, however, all functionality is
not needed in order to evaluate the validity of a condition. An ab-
stracted model that does not contain data manipulations is much
lighter and still can serve to check conditions such as deadlocks,
termination, and race-conditions.

read("top.z3z");
read("Creat_SDP.lib");
read("Verif_Determ.lib");
read("Property.lib");
Alive(S);
Reachable(S,B_True(S,test3));
Always(S,B_False(S,test3));

Figure 17: Verification of Properties using Sigali

Figure 18 depicts the code for a possible abstraction for the FIR
model, reduced to the description of control-flow transitions be-
tween blocks. The light weight of this model allows for much faster
verification of properties, and, therefore makes it possible to check
for these properties on a higher design level, possibly comprising
the whole system. For detailed checks including correctness of data
manipulations or range-checks, the complete type can be used.

process fir (? boolean input_valid, clk1
! boolean out_ready)

(| out_ready := false when xfir
default false when xL3
default true when xL9
default out_ready$ init false

| xfir := false when xL3
default (xfir$ init true)

| xL3 := true when xfir$
when clk1
when not (clk1 = clk1$)

default true when xL9a
when clk1
when not (clk1 = clk1$)

default false
| xL3a := true when xL3

default xnL3a$1 init false
| xL9 := true when xL3a

when input_valid
default false

| xnL3a := true when xL3a
when not not input_valid

default false
| xnL9a := true when xL9

default true when xL9a
when ((not clk1)

default (clk1 = clk1$))
default false

| xL9a := xnL9a$1
| input_valid ˆ= xfir ˆ= xL3 ˆ= xL9 ˆ= clk1

ˆ= xnL3a ˆ= xnL9a ˆ= out_ready
|) where integer i; boolean xL3, xnL3a, xL3a,

xL6, xfir, xL9, xL9a, xnL9a;
end;

Figure 18: Abstract SIGNAL model

Status and Current Work.There are still some obstacles to
get this process smoothly to work. As we have seen in Section 5, it
is not obvious to obtain clean SSA code. Therefore substantial ef-
fort has to be put into the generation of clean and reasonably short
SSA code. This can be done with compiler optimizations on the
one hand and pre/post processing on the other hand. When gen-
erating clock dependencies and the SIGNAL type respectively, the
crucial point is the advancement of time. It has to be made sure that
if blocks assign the same variable, there has to be an advancement
of time in between. As the whole control tree has to be considered,
this problem breaks down to graph coloring and is not trivial.

The presented approach illustrates its applicability for both C++
and JAVA . However, for SYSTEMC there are some additional is-
sues to consider. As for now, we treat only the entry functions of
SYSTEMC programs. In order to type a whole SYSTEMC applica-
tion consisting of several modules in the same way, multiple entry
functions would have to be treated as well as the architecture and
connectivity between them. This is ineffective to do in SSA be-
cause the change to the lower level will obstruct the higher level
hierarchy structures. Consequently, the pre processing step has to
be designed to be more sophisticated in order to handle the struc-
ture correctly. Also, adequate SIGNAL statements equivalent to cer-
tain SYSTEMC constructs such assc fifo or sc semaphorehave to
be defined. These can then form a library that would significantly
simplify the conversion process.

6. RELATED WORK
The capture of the behavior of a system through a type theo-

retical framework relates our technique to the work of Rajamani
et al. [17], and many others, on abstracting high-level and concur-
rent specifications, e.g. theπ-calculus, by using a formalism, e.g.
Milner’s CCS, in which, primarily, checking type equivalence, e.g.
bisimulation, is decidable.

Our contribution contrasts from related studies by the capability
to capture scalable abstractions of the type-checked system. In our
type system, scalability ranges from the capability to express the
exact meaning of the program, in order to make structural trans-
formations and optimizations on it, down to properties expressed
by Boolean equations between clocks, allowing for a rapid static-
checking of design correctness properties. Our system allows for a
wide spectrum of design abstraction and refinement patterns to be
applied on a model, e.g. abstraction of states by clocks, abstraction
of existentially quantified clocks, hierarchic abstraction, in the aim
of choosing a better degree of abstraction for faster verification.

We share the aim of a scalable and correct-by-construction ex-
ploration of abstraction-refinement of system behaviors with the
work of Henzinger et al. on interface automata [5]. Our approach
primarily differs from interface automata in the data-flow formal-
ism used in the Polychrony workbench where partial clock and
scheduling relations express the multi-clocked synchronous behav-
ior of the system. Compared to an automata-based approach, our
declarative approach allows to hierarchically explore abstraction
capabilities and to cover design exploration with the methodolog-
ical notion of refinement along the whole design cycle of the sys-
tem, ranging from the early requirements specification to the latest
sequential and distributed code-generation [20, 13].

7. CONCLUSION
The approach presented shows how to obtain a behavioral SIG-

NAL type from SYSTEMC components. The passage through the
GIMPLE-SSA form allows for a straightforward translation to a
formal synchronous model. When used for SYSTEMC compo-
nents, this methodology can significantly help to detect problems
in the connection with other components. If a synchronous compo-
sition of several SIGNAL types is successful the connection of the
corresponding SYSTEMC components is very likely to work. Ad-
ditional confidence can be gained by verifying formal properties of
the components as well as of any composition of components thus
increasing certainty on the correctness of the whole system design.
If the methodology is systematically applied, a constantly growing
library of verified IP components is obtained that helps to substan-
tially reduce development cycles and makes it possible to develop
larger scale systems.

8. REFERENCES
[1] T. P. Amagbegnon, L. Besnard, and P. Le Guernic. Implementation

of the data-flow synchronous language signal. InConference on
Programming Language Design and Implementation. ACM Press,
1995.

[2] A. Benveniste. Some synchronization issues when designing
embedded systems from components. InConference on Embedded
Software, EMSOFT’01, volume 2211, pages 32–49. T. Henzinger
and C. Hirsch, Eds, LNCS, 2001.

[3] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous
programming with events and relations: the signal language and its
semantics.Science of Computer Programming, 16(2):103–149,
1991.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form and the
control dependence graph.ACM Trans. on Programming Languages
and Systems, 13(4):451–490, 1991.

[5] L. de Alfaro and T. A. Henzinger. Interface theories for
component-based design. InFirst International Workshop on
Embedded Software, pages pp. 148–165. Lecture Notes in Computer
Science 2211, Springer-Verlag, 2001.

[6] F. Doucet, S. Shukla, and R. Gupta. Typing abstractions and
management in a component framework. InAsia and South Pacific
Design Automation Conference (ASP-DAC). IEEE Press, Jan. 2003.

[7] Free Software Foundation. The GCC tree-ssa documentation.
http://gcc.gnu.org/onlinedocs/gccint/Tree-SSA.html.

[8] Free Software Foundation. The GNU compiler collection.
http://gcc.gnu.org

[9] D. Gajski, J. Zhu, R. D̈omer, A. Gerstlauer, and S. Zhao.SpecC:
Specification Language and Methodology. Kluwer Academic
Publishers, Mar. 2000.

[10] T. Groetker, S. Liao, G. Martin, and S. Swan.System Design with
SystemC. Kluwer Academic Publishers, 2002.

[11] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and
B. Sridharan. Designing the McCAT Compiler Based on a Family of
Structured Intermediate Representations. InProceedings of the 5th
International Workshop on Languages and Compilers for Parallel
Computing, pages 406–420. Springer-Verlag, LNCS 757, 1993.

[12] IRISA, project ESPRESSO. The polychrony workbench.
http://www.irisa.fr/espresso/Polychrony.

[13] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system
design.Journal of Circuits, Systems and Computers, 12(1), Apr.
2003.

[14] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic.
Synthesis of discrete-event controllers based on the signal
environment.Discrete Event Dynamic System: Theory and
Applications, 10(4):325–346, Oct. 2000.

[15] J. Merrill. GENERIC and GIMPLE: A new tree representation for
entire functions. InGCC Developers Summit, Ottawa, Canada, May
2003.

[16] Open SystemC Initiative. The OSCI systemc website.
http://www.SystemC.org/, 2004.

[17] S. K. Rajamani and J. Rehof. A behavioral module system for the
pi-calculus. InProceedings Static Analysis Symposium (SAS’01),
Paris, July 2001. Springer Verlag.

[18] J.-P. Talpin, D. Berner, S. Shukla, A. Gamatié, P. Le Guernic, and
R. Gupta. A behavioral type inference system for compositional
system-on-chip design. InInternational Conference on Application
of Concurrency to System Design (ACSD), Hamilton, Canada, June
2004.

[19] J.-P. Talpin, A. Gamatié, D. Berner, B. Le Dez, and P. Le Guernic.
Hard real-time implementation of embedded systems in java. In
International Workshop on Scientific Engineering of Distributed
JAVA Applications, Lectures Notes in Computer Science. Springer
Verlag, Nov. 2003.

[20] J.-P. Talpin, P. Le Guernic, S. K. Shukla, R. Gupta, and F. Doucet.
Polychrony for formal refinement-checking in a system-level design
methodology. InSpecial Issue of Fundamenta Informaticae on
Applications of Concurrency to System Design. IOS Press, Aug.
2004.

process fir=(? boolean input_valid,clk1;
integer sample

! integer result;boolean out_ready)

|t_i^= sample ^= input_valid ^= sample_tmp ^= acc
^=shift ^= coefs ^= result ^= xfir ^= xL1 ^= xL3
^=xL3b ^= xL9 ^= xnL1a ^= xnL3a ^= xnL4 ^= xnL13
^=xnL7 ^= xnL9a ^= clk1 ^= out_ready|)

where integer i, sample_tmp, acc;
[16] integer shift , coefs, zshift;
boolean xL3b, xnL1a, xL3, xL13, xL7, xL4, t_i,
xfir, xL0, xL1, xL1a, xnL0, xnL1, xnL3a, xnL4,
xnL13, xL5, xL8, xL9, xL9a, xL3a, xnL7, xnL9a;

end;

process stimulus =
(? boolean clk1; integer cycle
! boolean input_valid; integer sample, t_cycle)

(| xstim := clk1
| t_cycle:=cycle + 1 when xstim default t_cycle$
| cond1 := cycle <=3 default false
| xL0 := when cond1 when xstim$ default false
| xL1 := when not cond1 when xstim$ default false
| input_valid := false when xL0

default false when xL1
default true when xL2 default false

| xL3 := when xL0
default when not cond2 when xL1
default when xL2 default false

| cond2:=(cycle modulo 19 == false) default false
| xnL2 := when cond2 when xL1 default false
| xL2 := xnL2$
| sample := send_value when xL2 default sample$
| write("Sample: ", sample when input_valid)
| send_value := (send_value$ init 0) +1 when xL2 default

send_value$
| clk1 ^= input_valid ^= send_value ^= t_cycle

^= cycle ^= cond1^= cond2^= xstim ^= xL0
^= xL1 ^= xnL2 ^= xL3 ^= sample

|) where integer send_value; boolean cond1,
cond2, xstim, xL0, xL1, xL2, xnL2, xL3;

end;

| xL3 := when (xL1a or xL9a)
when clk1 when clk1 = clk1$ init 0
default false

| xnL1a := when not t_i when xL1 default false
| xL3a := when xL3 default xnL3a$1 init false
| xL3b := when xL3a when input_valid

default false
| xnL3a := when xL3a when not input_valid

default false
| sample_tmp := sample when xL3b

default sample_tmp$ init 0
| i ::= 15 when xL3b
| out_ready ::= false when xL3
| acc ::= coefs[0] * sample_tmp when xL3b

process display =
(? boolean out_ready; integer result)
(| o_result := result when out_ready
| message1 := "Result: "
| write(message1, o_result)
| o_result ^= message1
|) where string message1; integer o_result;

end;

(|coefs:=[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
| xfir := false when xL1

default (xfir$ init true)
| i ::= 0 when xfir
| i ::= i$ +1 when xL0
| result ::= 0 when xfir
| out_ready ::= false when xfir
| xnL1 := xfir
| xL1 := when xL0 default xnL1$1 init false
| zshift := shift$1
| t_i := (i < 15) when xL1 default false
| xnL0:= t_i
| xL0 := xnL0$1
| xnL1a := when not t_i when xL1 default false
| xL1a := xnL1a$1

| acc ::= acc$ + shift[i]* coefs[i+1] when xL4
| xL5 := when xL3b default xL4
| xnL4:= when i>0 when xL5 default false
| xL4 := xnL4$1
| xnL13:= when i<=0 when xL5 default false
| i ::= i$ -1 when xL4

| xL13 := xnL13$1
| xL8 := when xL13 default xL7
| xnL7 := when i>0 when xL8 default false
| xL7 := xnL7$1
| xL9 := when i=0 when xL8 default false
| xnL9a := when xL9 default when xL9a

when not clk1 default clk1 = clk1$ init 0
default false

| xL9a := xnL9a$1
| i ::= 15 when xL13
| i ::= i$ -1 when xL7
| result ::= acc when xL9
| out_ready ::= true when xL9
| array k to 15 of
shift[k] := (k when xL0)
default (shift[k-1] when (k=i+1) when xL7)
default (sample_tmp when k=0 when xL9$)
default zshift[k]

end

Figure 19: Block view of the SIGNAL type for the FIR filter

