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Abstract

In this paper, we show the usefulness of an agile formal
method (named XFM) based on extreme programming con-
cepts to construct abstract models from a natural language
specification of a complex system. Building formal models
for verification purposes is being employed in the industry
for two different usage modes: (i) Descriptive Formal Mod-
els (DFM) which, are used to capture an implementation
into an abstract model to submit to analysis by model check-
ing tools, (ii) Prescriptive Formal Models (PFM) which, are
used to capture natural language specifications into a for-
mal model to analyze consistency of the specification and
also as a reference model to compare a DFM against it. We
propose XFM as a methodology to incrementally build a
correct PFM from a natural language specification. In this
paper, using XFM, on various examples related to micro-
processors, we build the models of DLX pipeline in SPIN,
the ISA bus monitor and arbitration phase of the Pentium
Pro bus in SMV.

1. Introduction

Computational systems, consumer electronics, avionics
and other mission critical systems are dependent on com-
plex hardware and software components. Most often, these
systems entail a complexity beyond the scope of ordinary
validation techniques. Formal verification and formal meth-
ods for test generation, etc. have been emerging as viable
techniques for mitigating this increasing system complexity
and the resulting validation challenges.

However, formal methods often themselves are complex,
difficult to use, and require mathematical sophistication. To

make formal methods available to regular engineers, one
has to build methodologies and tool sets that enable the en-
gineers to easily utilize the effectiveness of formal methods
without being thwarted by the complexity of the method it-
self.

We propose Extreme Formal Models (XFM) as a
methodology to incrementally build a correct PFM from a
natural language specification. PFMs can be used to gen-
erate checkers, coverage monitors and formal properties for
verifying the DFM for the corresponding processors. Our
approach is necessitated by the absence of a prescription
on how to go about building these models from natural lan-
guage documents in the literature. For example, in [6] SMV
specifications of bus protocols are developed as PFM but the
goal of these PFM is to check consistency or test genera-
tion and it does not prescribe any incremental methodology
based on regression. In [1] the specification language ESL
is described in which all properties are specified together
and then an automaton is synthesized from the complete
ESL specification. This wholesome approach often has the
problem that (i) the inconsistency in the properties or mis-
takes in capturing the intended property are found late, (ii)
the synthesis of automata may explode in size when ev-
erything is considered together. We have tried our hands
on some of theω-automata synthesis tools [3] and usually
when the number of properties are sizable, such synthesis
tools do not work well. It might be better and more feasible
to construct the model by hand incrementally as is explained
later in this paper and regressively model check it to ensure
constructively correct models.

Our methodology is based on the ideas of Extreme Pro-
gramming (XP). We show the flow and demonstrate the
benefits of this XP based methodology with three hardware
based examples: the DLX pipeline, monitor of the ISA bus



and the arbitration phase of the Pentium Pro bus. Our exper-
iments show that this methodology not only constructs ab-
stract models in sufficiently shorter time than the time taken
in constructing ad hoc abstract models from implementation
or specification, but also provides models that are construc-
tively correct and closer to the intended specification.

The paper is organized as follows. In Section 2, we dis-
cuss some of the rules of XP. In Section 3, we discuss the
guidelines of XFM which is followed by case studies and
its experimental results in Section 4 and 5. We conclude
the paper with a brief summary in Section 6.

2 Extreme Programming

Extreme programming [9] (XP) has been popularized
in the object oriented software community in the recent
years. It introduced novel guidelines and concepts of an
agile methodology that seem to increase programming pro-
ductivity significantly while producing higher quality error
free code [11, 10]. Extreme programming is a ”Test-driven”
approach. The customer gives a set of user stories that are
converted to a test. These tests are run every time when-
ever a newer version of code is released. This regression
technique of testing the code at every phase makes the sys-
tem gain a better test coverage. It involves building of code
by starting from a simple design and performing a thorough
test on each stage while improving upon the design. The XP
team keeps the design thorough and completely relevant to
the requested functionality of the system. Its core function-
alities involve getting user stories from the user. The user
stories are short descriptions that convey the exact detail of
the required functionality of the design, which enables the
programmers to be certain about the features that are be-
ing requested by the customer. Extreme programming is an
incremental and iterative process, therefore having a good
design from the start is essential. One of the focuses of ex-
treme programming is the validation of the software at all
times. Programmers develop the software by writing the test
cases first from the user stories provided by the customers.
Refactoring and continuous regression are also one of the
main aspects of extreme programming which enables the
programmer to improve the design of the system through-
out the entire developmental process. The improvement of
the design is done by cleaning up the code and removing
duplication of the design aspects. A complete reference of
extreme programming can be found at [9, 11, 10].

3 Extreme Formal Modeling (XFM)

As for any system development, it is important to have
a concise and clearly written specification of the system.
Some time must be spent on the specs to get an overview

of the whole system and maybe visualize its main structure.
Both, a clear system specification and a deep understanding
of the system are crucial for good LTL properties.
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Figure 1. Capturing a formal model with XFM

Many of the Extreme Programming (XP) rules can be
applied directly and successfully in XFM. For instance, one
of the main XP rules is to write tests before the actual code
(test-driven approach). In XFM, this rule maps to speci-
fying the linear time property before writing the abstract
model (property-driven approach). Another important XP
technique is to add functionality as late as possible, incre-
mentally increasing the complexity of the model. Iterations
are small steps in the development process. At the start of
each iteration the goals are identified and written down in
the form of “user stories” - individual cards that point out
specific implementation details and requirements. These
user stories act as a detailed guideline for the programmer.
To refactor problems, to update tests after a bug is found,
and to work in pairs are also principles that are as beneficial
to the capturing of formal methods as they are for common
programming projects.

Figure 1 presents XFM’s incremental approach to formal
modeling. The initial part of our XFM procedure involves
breaking down the English specification into user stories.
We select a user story that describes basic functionality of
the system, and transform it into an LTL property.

At this stage, we can check if the LTL property correctly
expresses the behavior of the user story. LTL properties
can be visualized as finite state machines and LTL 2 BA
eases this step by displaying the corresponding FSM. It is
important that while implementing the model, only the be-
havior of this property is taken into account. After building
the complete list of linear time properties, we select one
property from the list and build an abstract model for this
property and model check if it holds for the model. Once
the property is satisfied, we take a second property, extend
the model according to this property, and model check for
both properties. This procedure is repeated until the abstract
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model contains all behavior from the English specification
and all the properties in the list are satisfied. The controlled
and incremental model building results in a compact and
structured abstract model. If the model checker fails to val-
idate the property, we can locate the error with the help of
a trace file generated by the model checker, fix the bug and
rerun verification. Whenever a property fails to validate, it
usually is straightforward to find the bug as it must be re-
lated to the latest additions. The complete effort of model-
ing and bug fixing grows incrementally along with the size
of the model. Algorithm 1 gives a formal representation of
XFM.

Algorithm 1 XFM Approach

{For a given system, we have the behavior in terms of a natural language
specification that is converted into user stories}
Let US{us1, us2, ..., usn} be the set of all user stories for the system
LetΠ(usi) = {πj , πj+1, ..., πk} be the set of properties for a user story
Let Π = ∪iΠ(usi) ={π1, π1, ..., πm} be the complete set of prop-
erties
Let Πi = {π1, π1, ..., πi} ⊆ Π, soΠi represents the firsti properties.
Let X(Πi) be the model that satisfies all properties inΠi

Initial X = ∅, i = 0,
Step1: i := i + 1
Step2: Build Abstract Model X(Πi); the model
is built to satisfy all the properties in Πi

simultaneously.

X := X(Πi)
ModelCheck(X, Πi) /* This is the regression step */
if ModelCheck fails for a πk

go to Step2 /* to change the model so the
failing property can pass */

else ifi = m
X is the required model

else
go to Step1

4 Experiments

4.1 Model of a DLX pipeline control

The pipeline control of the DLX RISC processor model
[2] is a well known and reasonably large example to show
the use of XFM. The DLX has a 5-stage pipeline, which
means up to five instructions can run concurrently. The cy-
cles for the instructions are instruction fetch (IF), instruc-
tion decode (ID), execute (EX), memory access (MEM),
and write back (WB). However, not all instruction types use
the same cycles in the same order. Table 1 shows the cycle
usage for the different instruction types.

Starting from this system description, we identify the
first user story. One of the most basic behaviors states that
each instruction executes in a certain order. So, generally
speaking, instructions execute in the orderIF → ID →
EX → MEM → WB. In LTL this can be expressed as

Table 1. Cycles for Different Instruction Types

IF ID EX MEM WB
Arithmetic X X X X
Load X X X X X
Store X X X X
Branch X X X X

[](if → Xid), always ID after IF and then the same for ID
and EX, EX and MEM, MEM and WB, and finally WB and
IF.

The second user story is the fact that this order of exe-
cution still has to hold when we consider five concurrent
instructions in the pipeline. In order to keep the model
small we decide to use five concurrent processes each of
which handles one instruction. Since the processes run in-
dependently, the first property does not hold any more. It
is not guaranteed that directly after the first instruction is in
the fetch stage it advances to the decode stage, since in the
meantime other processes may get execution time. What
we can guarantee however, is that we will never go directly
into any of the other stages. Now this has to be expressed
for each cycle in each instruction, which means we get 25
LTL properties such as cat1 in Table 2.

Figure 2. PROMELA code for one single in-
struction

proctype instruction1() {
inst_if:

if
:: st1=fet; goto inst_id fi;

inst_id:
if
:: st1=dec; goto inst_ex fi;

inst_ex:
if
:: st1=ex; goto inst_mem fi;

inst_mem:
if
:: st1=mem; goto inst_wb fi;

inst_wb:
if
:: st1=wb; goto inst_if fi; }

In the next iteration we introduce the possibility to con-
trol the instructions from outside. This is done by ”enable
signals”, one for each instruction. The LTL expression will
say that an instruction will not advance unless the enable
signal is given. Again we obtain 25 properties in the style
of cat2 in Table 2. The changes in the model for these prop-
erties are small, so all of them can be verified without prob-
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cat1 [](if1 →!(Xex1||Xmem1||Xwb1))
cat1b []((ex1&&(load1||store1||branch1)) →!(Xif1||Xwb1||Xdec1||Xwait1))
cat2 []((if1&&!enable1) → (if1Uenable1))
cat2b []((wait1&&!enable1) → (wait1Uenable1))
cat3 [](if1 → ((enable1Udec1)||!enable1))
cat3b []((ex1&&(load1||store1||branch1)) → ((enable1Umem1)||!enable1))
cat4 []((if1&&enable1) → ((!(if2&&enable2)||(!(if3&&enable3))

||(!(if4&&enable4))||(!(if5&&enable5)))U !enable1))

Table 2. LTL properties for pipeline (examples)

lems.
The following iteration is adding some synchronization.

Our user story says that the control enables each instruction
in each cycle. Once the instruction advances, it is setting
its enable signal to zero, thus signaling the control that it is
ready for the next cycle.
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Figure 3. Automaton for one instruction

Another important behavior of a pipeline is to prohibit
the multiple usage of resources. If at no time the fetch, de-
code, execute, address bus, and data bus units are used by
more than one instruction there are no resource conflicts.
Cat4 in Table 2 expresses this in LTL for the fetch cycle of
the first instruction. Again the category will consist of 25
properties, one for each cycle. In order to satisfy this prop-
erty in the model we are introducing a control process that
in an initialization phase will start each instruction succes-
sively, and later makes sure that the every instruction ad-
vances in each cycle. Again the verification of all prop-
erties and simulation finishes up this iteration step. With
only 4 categories of properties the basic functionality of the
pipeline is now verified and working.

To make the model of the pipeline a bit more realistic,
we select the user story that defines the different instruc-
tion types and their different cycle sequences from Table 1.
It turns out that this does not result in a new category of
properties, but rather implies changes to existing properties.
This step illustrates that in the iterative process, not only

does the model evolve, but also the properties can evolve
and get more complex later in the modeling process. To
satisfy the requirement, we extend our basic instruction au-
tomaton with a wait stage and transitions according to Ta-
ble 1 (Figure 3). This will make sure that an arithmetic
instruction for example will now go from EX to WAIT and
then to WB. We have to change some properties in category
1 and 3, and add properties in all four categories. Result-
ing LTL examples are shown in cat 1b and 3b in Table 2.
Changes in the abstract model to reflect this are limited to
update the FSM description for each instruction to the au-
tomaton of Figure 3 that means introducing the notion of
an instruction type, and adding the transitions to and from
the wait stage. These changes are transparent to the control
logic since after the changes still each instruction takes 5 cy-
cles to finish, therefore preventing the occurrence of struc-
tural hazards. Of course there would still be many more
details that could be added to the pipeline, such as data de-
pendencies and forwarding, but the steps will always be the
same, so we will not continue this for this paper.

4.2 ISA Bus Architecture

The model of the ISA bus architecture is one of the ba-
sic models of the first IBM PC. The main component of the
ISA bus architecture is the expansion bus. The expansion
bus interfaces the memory with the I/O cards. The model
of the ISA bus protocol is based on the signal specifica-
tions indicated in [5]. Based on the functions, the signals
are grouped into address signals, data signals and the sys-
tem management signals. The bus clock drives the ISA bus
and brings in the notion of timing. When the unit is initially
powered up, the reset signal on the ISA bus remains asserted
until the power supply voltages have stabilized. Also the
ISA cards are prevented from functioning until the power
has stabilized. When a bus cycle is initiated by the CPU,
the target address is placed on the address bus once the
Buffered Address Latched Enable (BALE) signal appears
on the bus. The BALE signal is used to indicate that the
address has been successfully decoded. Once the address
becomes valid, the data transfer proceeds either on the up-
per or lower paths of the data bus based on whether it is an
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8 bit or 16 bit expansion card that initiated the bus cycle
with or without the System Bus High enable asserted. The
specification of the ISA bus along with the corresponding
properties is illustrated with detail in [7].

4.3 Pentium Pro Processor’s Bus Arbitration

One of the most important concerns of the Pentium Pro
bus is how it handles arbitration between its symmetric
and priority agents [4]. Before a request agent can issue
a new transaction to the bus, it must arbitrate for and win
ownership of the request signal group. Once ownership
has been acquired the request agent initiates the request
phase of the transaction. The Pentium bus arbitration
model captures the behavior of the bus arbitration. Some
of the behavior handled includes the arbitration among the
symmetric agents, arbitration by the priority agents and
its affect on the symmetry agents. Also, the user stories
incorporate the behavior when the symmetric agent locks
the bus and a priority agent is giving a request. The ability
of bus parking by an agent is also modeled. The Pentium
architecture of arbitration contains four symmetry agents
and a priority agent, where a symmetric agent is a processor
capable of handling any task. At a given instance in time,
one or more of the processors may request ownership of
the request signal group in order to communicate with
an external device. The bus arbitration decides which of
the processors gets the ownership next based on a built in
rotational priority assignment scheme for which each of
the processors always keeps track of whether any of them
currently owns the signal group, and which of them owned
the group last or still owns it and which of them gets to use
it next. In order for them to track this information, each
agent knows its own agent ID as well as the agent ID of the
processor that last gained ownership of the request signal
group.

The arbitration event is the passing of the ownership
from one symmetric agent to another. It occurs under the
following circumstances:

• None of the agents is requesting during one clock cycle
and then one or more are seen requesting in the next
clock cycle.

• The current symmetric owner of the request signal
group relinquishes ownership of the bus and one or
more of the other agents have been requesting access
to the bus.

In either case, the symmetric agents must collectively de-
cide which of them will assume ownership of the request
signal group in the next clock cycle.

In the Arbitration event, When only one of the symmet-
ric agents is requesting for the bus, it wins the arbitration

and gets the ownership of the request signal group. Though,
complete set of user stories and their corresponding prop-
erties are illustrated in [7], we mention some of the user
stories here.

User Story : If only agent 2 is requesting the ownership
of the bus then it is given the ownership of the bus and all
other agents will update their rotating ID to ’2’, irrespective
of who was the previous owner.

G(!breq0 && !breq1 && breq2&& !breq3 && Arbit && X
!reset→ X Rid2̄ && X busstate)

Whereas, if two or more of the symmetric agents is
requesting for the bus, one of them wins the arbitration and
gets the ownership of the request signal group based on
who had the ownership previously. The sequence in which
the processor gains ownership is 0, 1, 2, 3, 0, 1 (Agent ID’s).

User Story : If agent 2 and agent 3 are requesting access
to the bus and if agent 0 currently owns the bus then agent
2 wins the arbitration and gains ownership of the bus.

G(!breq0&& !breq1&& breq2&& breq3&& Rid0̄ && Arbit
&& X !reset→ X Rid2̄ && X busstate)

Each agent has an Rid and a bus state which are their
internal states used for keeping track of the bus status and
the ID of the current owner of the bus.

The processor may retain ownership after completing
a transaction in case it may need the request signal group
again in the future. This is referred to as bus parking. When
a processor parks the ownership of the bus, it may retain
the ownership until another processor requests ownership.
In other words, be fair to the other processors.

User Story : If agent0 is the owner of the request signal
group and one or more of the other agents are requesting
access to the bus then agent0 deasserts its request and allows
the other agents to arbitrate the ownership.

G(busstate&& Rid0̄ && (breq1 || breq2 || breq3)&& Arbit
&& → !breq0)

If an agent is requesting the ownership within 4 arbitra-
tion events it is given the ownership of the request signal
group.

5 Experimental Results

The ISA Bus and the arbitration phase of the Pentium
bus were modeled and results of their state space growth
were recorded. Both these models differ in the number of
properties to be modeled as well as the size of the model.
Vacuity check was also performed on all the properties to
ensure that they are not vacuously true. In the model of the
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Figure 4. ISA bus state space graph

ISA Bus architecture, 16 properties were modeled. These
properties were derived from 14 distinct user stories and 15
predicates. The data for the state space reached for each
property were noted after they were verified. The results of
the state space search of the ISA bus model is shown in Fig-
ure 4. The order in which is the properties were modeled
was selected based on a predicate-based ordering scheme
which we define in [8]. It can be seen from the graph that
the state-space growth is incremental with the growth of the
model. While modeling the 14th property, we had to add
a large factor of non-determinism into the system and as
a result the state space increases drastically which can be
seen in the graph. The reason for the addition of the non-
determinism is due to the lack of knowledge of the behavior
of some predicate modeled for that property. On the other
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Figure 5. Pentium bus state space graph

hand, the model of the arbitration phase of the Pentium bus
is more complex than the model of the ISA bus model. The
arbitration model consisted of 126 properties with 24 predi-
cates. The results of the state space search of the arbitration
phase model of the Pentium Pro bus is shown in Figure 5.
It can be seen that our approach of modeling scales well for
large systems and the state space growth is incremental with
the growth of the model.

6 Conclusion

We present and demonstrate the usage of agile methods
for the formal modeling of hardware systems. The pre-
sented methodology focuses on the concept of incremen-
tal formal modeling based on properties from a natural lan-
guage specification. Each property represents a specific be-
havior based on which the abstract model is constructed.
Since XFM involves an iterative technique, the evolving
abstract model facilitates debugging whenever a property
is found unsatisfied. In each iteration step the behavior is
confined by adding additional properties and details to the
abstract model. The fact that the behavior of the abstract
model is closely linked to the properties entails a close to
complete set of properties once the abstract model is com-
plete. In the conventional approach, however, the abstract
model tends to contain much more functionality than spec-
ified, but less properties than needed as there is no mech-
anism that provides for the exposure of all properties con-
tained in the specification.
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