SystemCXML: An Extensible SystemC Front End Using XML

David Berner, Jean-Pierre Talpin
Institut de Recherche en Informatique et Systemes Aléatoires (IRISA/INRIA), France

Hiren Patel, Deepak Abraham Mathaikutty, Sandeep Shukla
Virginia Polytechnic and State University, FERMAT Lab., USA

Abstract

To draw full benefit of the possibilities that system level design languages such as SystemC
offer, we require tools that enhance the design experience through visual representation of mod-
els, improved debugging facilities, integrated development environments, etc. the primary task in
providing these tools is the parsing of SystemC source to directly extract the structural design
information. In this paper, we present a front end for SystemC called SystemCXML that uses an
XML-based approach to achieve the extraction of structural information from SystemC models,
which can be easily exploited by different back end passes for analysis, visualization and other
structural analysis purposes. Our unique approach uses the documentation system Doxygen and
an Open Source XML parser. We demonstrate its extensibility by incorporating an automated
graph generator that visualizes the SystemC module hierarchy.

1 Introduction

Industrial use of languages such as C/C++ for system level design are common for achieving fast
simulation and realization of ideas and concepts. Many times industries create their own C/C++
based simulation environments for just this purpose. However, with the introduction of SystemC [9],
the Open Source Consortium Initiative (OSCI) proposed a standardization for a C++ based hardware
modeling language (HDL) with an extensive datatype library, free discrete event simulator, and useable
with most C++4 compilers. In addition, the inherent abstraction capabilities of C++ such as templates,
classes, polymorphism, etc., further promote its use and improve design experience. For example,
transaction level modeling or communication refinements are not easily accomplished with traditional
HDLs such as Verilog and VHDL. The advantage of using SystemC is that all capabilities of C/C++
are available for the designer to use, in addition to the SystemC constructs. This allows intellectual
property components (IPs) written in C/C++ to be easily integrated into designs. However, the
proliferation of third party tools for visual modeling environments, debuggers, integrated development
environments, call tracing etc. requires understanding the SystemC syntax and the structure of the
models. For this, it is necessary to parse and understand the SystemC’s structural information. By
structural we mean the modules, their ports, signals that connect them and the structural hierarchy
used in connecting the entire model.

As SystemC continues to gain momentum as an HDL, this demand for graphical user interface
(GUI) based design approaches, integrated development environments (IDEs), and SystemC-specific
debuggers, is rapidly growing. Some industry tools such as ConvergenSC system verifier [3] and Incisive
functional verification [1] provide some of these functionalities. However, most tool vendors provide
SLD tools with varying usability. Most of them, do not yet exploit all possibilities of system level
design analysis and transformation. Furthermore, SystemC is simply a library of C++ classes and
thus it is heavily dependent on the C++ compiler, making the extraction of structural or behavioral
information a difficult task without altering the compiler and perhaps the SystemC source. Doing
this would, however, limit the choice of compilers that support SystemC. We term any alteration to
either the compiler, the SystemC libraries, or the SystemC language as intrusive. Hence, we aspire
the extraction of structural and behavioral information from a SystemC model using an unintrusive
methodology that is also made available to the public-domain community. As a step towards providing
an unintrusive approach for interpreting a SystemC model, we discuss the use of extensible markup
language (XML) based approach using Doxygen [4], a public-domain documentation system, and XML
parsers for extracting structural information that we call SystemCXML.

In this paper, we describe a tool that simplifies SystemC parsing using the following tools: XML,
Apache XML parsers [13], and Doxygen. We also provide an intermediate representation (IR) to

facilitate the access to the extracted information during the parsing phase. However, our focus is
primarily on extracting structural information. In the current release version, we ignore behavioral
information, disallowing use of it for some applications such as synthesis. However, our approach pro-
vides a lightweight and Open Source solution for source-to-source translations, structural information
extraction, model visualization and documentation. The intermediate XML data format makes it easy
to extend this solution by plugging in a different front end or back-end passes, or even simpler, by just
adding an additional passes to the back-end.

2 Related Work

EDG [6] is popular commercial tool that enables SystemC parsing. EDG is a C/C++ front end that
parses C/C++ and represents the source using an IR data structure. Multiple traversals through
the data structure can be performed to extract the required information. Therefore, the structure of
SystemC models is available for extraction from the IR along with the behavioral information of the
model as well. Unfortunately, EDG is a commercial tool, and requires licenses for use and does not
allow source code distribution.

SystemPerl’s SystemC::Parser An alternative to EDG [6] is SystemPerl’s SystemC: :Parser
module [12] that implements a SystemC parser and netlist generator using Perl scripts. Using the power
of regular expressions, the task of recognizing SystemC constructs is made easy, and the Open Source
nature of SystemPer]l makes its use much more attractive. However, one major distinction between
EDG and SystemPerl is that SystemPerl only extracts structural information and not behavioral.
For most uses, structural information is sufficient, unless considering synthesis from SystemC which
requires all the behavioral information as well. To our understanding, SystemPerl has some limitations.
One of them is that it requires source-level hints in the model for the extraction of necessary information
and the IR of SystemPerl cannot be easily adapted to other environments and purposes.

Pinapa [8] is a recently released Open Source SystemC front end that uses GCC’s front end to
parse all C++ constructs and infer the structural information of the SystemC model by executing
the elaboration phase, which is a very attractive solution. SystemC’s elaboration constructs all the
necessary objects and performs the bindings after which a regular SystemC model begins simulation
via the sc_start function. Instead, Pinapa examines the data structures of SystemC’s scheduler and
creates its own IR. Once the IR is constructed, the SystemC model executes. This solves the SystemC
parsing issue, it requires, however, modifications of the GCC source code which makes it (i) dependent
on changes in the GCC codebase, and (ii) forbids the use of any other compiler. Furthermore, the
SystemC libraries also have to be changed for this to work.

[Frass 1]~
SystemC Source Annotated XML o

Analysis, Transformation, Testing, Optimization, ...

Figure 1: Toolchain of the SystemCXML project

3 SystemCXML Toolchain

The SystemCXML toolflow (Figure 3) consists of three steps. In the first step we process the Sys-
temC code with Doxygen in order to generate an XML output that contains all the information of the
original SystemC code, but embedded withing XML tags. While Doxygen is a tool for automatically
generating documentation for projects through analysis of the source code, highlighting the structure
and comments, it also has an option for including the source code in the generated output. Further-
more, since the output is a well-formed XML document, any standard XML parsing library can easily
traverse it. We take advantage of this functionality and to approach the difficult problem of parsing
C++ code. Listing 1 shows some raw XML output that Doxygen generates. Note that most of the
information is delimited by tags, but there is need for some intelligence to extract it correctly.

The second step consists of reading in the Doxygen generated XML data with the help of the Xerces-
C++ XML parser [13], extract the structural information of interest, and write this information back
into an XML format in a way such that it is readily accessible for other purposes. We represent this
extracted information in an Abstract System Level Description (ASLD) XML file. Listing 2 shows
part of the ASLD, describing the structural information that was extracted from the Doxygen output
shown in Listing 1.

Listing 1: Output from Doxygen

1 SCMODULE (<ref

<codeline
3 <codeline
<codeline
5 <codeline
<codeline
7 <codeline
<codeline

lineno="315"
lineno="316"
lineno="317"

lineno="318"
lineno="319"
lineno="320"
lineno="324"

refid="classfir__top”>fir_top</ref>)<sp/>{

refid="classfir__top_1fir__topr0”’><sp/>sc_in<bool><sp/><sp/>CLK;
refid="classfir_top_1fir_toprl”’><sp/>sc_in< ;bool><sp/><sp/>RESET;
refid="classfir_top_1fir_topr2”><sp/>sc_in<bool><sp/><sp/>IN_VALID;
refid="classfir_top_1fir_topr3”><sp/>sc_in<int><sp/><sp/>SAMPLE;
refid="classfir_top_1fir_topr4”><sp/>sc_out< ;bool><sp/><sp/>OUTPUT_DATA READY;
refid="classfir_top_1fir_topr5”><sp/>sc_out<int><sp/><sp/>RESULT;

refid="classfir_top_1fir_topr7”><sp/><ref refid="classfir__fsm”’>fir_fsm</ref><sp/>
9 <sp/>xfir_fsml ;
<codeline lineno="325"
<sp/>x«fir_datal;
<codeline lineno=7327" refid="classfir_top_1fir_topd0”><sp/>SC.CTOR(<ref refid="classfir__top”’>fir_top
</ref>)<sp/>fir_fsml<sp/>=<sp/><ref refid="classfir__fsm”’>fir_fsm</ref><class="stringliteral”>"
FirFSM" ;) ;<sp/>fir_fsm1l —> ;<ref refid="classfir__fsm_1fir__fsmr0”>clock</ref>(CLK);</codeline>

refid="classfir_top_1fir_topr8” ><sp/><ref refid="classfir__data”>fir_data</ref>

11

13

Listing 2: Intermediate XML format

<module type = ”"SCMODULE” name = ”fir_top 7>
2 <inport type = ”bool” name = "CLK” />
<inport type = ”bool” name = "RESET” />
4 <inport type = ”bool” name = "IN_VALID” />
<inport type = "int” name = ”SAMPLE” />
6 <outport type = ”"bool” name = "OUTPUT_DATA READY” />
<outport type = ”int” name = "RESULT” />

8 <submodule module=”fir_fsm” name="fir_fsm1l”/>

<submodule module="fir_data” name="fir_datal”/>

<constructorof modulename = ”fir_top”>
<connection instance="fir_fsm1l” member="clock?”

10
local_signal="CLK” />

In the third step, we read in the ASLD and check if it conforms to the DTD description. We process
the information and store it in an internal structure that is both, easily accessible and one that closely
resembles the structure of the SystemC code. As the structure of the IR is the basis for all data
manipulations and back-end passes, it is important for it to be generic and the appropriate accessory
functions need to be implemented to query the IR. These functions make is possible to traverse the
module hierarchy and extract the required structural information. The IR contains classes for all
constructs that we extract such as Inport, Outport, Signal, Sensitivity, Process, Signal, and Module.
Some information that is not readily available in the XML can be obtained by analyzing the available
data. The topmodules list that points to modules that are not instantiated as a submodule, or the
connection class that holds connectivity information are examples for this.

4 Usage Example: A Visualization Back End Pass

One possible usage of SystemCXML is graphical visualization. There are many different display
possibilities that can help in better understanding a design for which most of the time the model’s
behavior is not needed at all. Visualization tools are especially helpful for design space exploration and
semi-automated design refinements. In addition to that, the automatic generation of graphs and lists
can be used in documenting system components, a step often neglected, leading to better collaboration
and easing component reuse. In order to demonstrate the ease of creating such a visualization tool,
we implement a back-end pass that generates a graph of the SystemC module hierarchy.

digraph fir_top

{ .
node [shape=box] ; sc_main
ratio=fill;
sc_main; \
sc_main->"stimulus1i\nstimulus"; = y
sc_main->"firl\nfir"; stimulus1 firl display1
sc_main->"displayl\ndisplay"; stimulus fir display

(a) DOT code (b) Resulting graph

Figure 2: DOT code and resulting graph for the FIR filter

Among the libraries available for graph rendering, we use the DOT format from the graphviz [7]
package to render our graphs. It is a comprehensive and easy to use package, which is used in many
Open Source projects. Figure 2 shows the DOT code for the FIR filter example and the resulting
graph. We use a digraph layout and choose boxed nodes whose width automatically adjusts to the
length of the node label. The first occurrence of a node name creates the node. Directed connections
are indicated with the ”7->” symbol. A DOT file can be visualized with Dotty the standard viewer
which is part of Graphviz, but there many other tools for conversion and visualization of DOT files
as [11].

To generate the graph, we start at the list of toplevel modules and then call the recursive function
submod_dot that writes out the relations to all submodules and successively calls itself for all the
submodules. As a node label we give the module name and the name of the instance. In order to keep
a strict tree structure with no rejoining branches, all instances have to have different names which
is not the case in the SystemC code. In order to avoid this we keep track of multiple instantiations
of a module and distinguish between the respective submodules. Figure 3 shows part of the module
hierarchy of a USB controller the code of which was obtained from OpenCores [2]. In the lower right
hand corner you can see four instances of usb_fifol128x8, containing an instance of usb_ram128x8.
These have been numbered in order to be able to distinguish them. The figure also shows that there
is not only one connected graph but multiple graphs. Larger projects often contain multiple sc_main
functions, used to individually simulate parts of the design in a separate testbench - like it is the
case in this example. The visualization of the hierarchy helps to see all these parts of the design and
understand their utility.

sc_main_2 sc_main_$

i_rom itest(3) | | itest@) itest() | [iphy (@) i_top i_test (6)
usb_top test

usb_rom test test usb_phy
i_usb
usb

test
it phy @) | | irxphy ()
usb_tx_phy usb_rx_phy
i_ff_ep3

i_ff_cpl
usb_fifo512x8 usb_fifol28x8

se_main_3 se_main_4

i_test i_phy
test usb_phy

i_tx_phy
usb_tx_phy

itest(2)
test

i_fifo
ush_fifo64x8

i_ram
usb_ram64x8

i_rx_phy
usb_rx_phy

i_ff_ep2 ()
usb_fifo512x8

i_ff_epd)
usb_fifol28x8

i_ff_eps (3)
usb_fifol28x8

i_ff_ep6 (4)
usb_fifol 28x8

]

i_ram (4)
usb_ram128x8

i_rom (2)
usb_rom

iffin (2)
ush_fifo64x8

i_ff_out (3)
usb_fifo64x8

i_ram
usb_ram512x8

i_ram (2)
usb_ram312x8

iram (2)
ush_ram128x8

i_ram (3)
usb_ram128x8

ush_ram128x8

i_phy (3)
usb_phy

i_tx_phy (3)
usb_tx_phy

i_ram (3)
usb_ram64x8

i_dma
usb_dma

i_ram (2)
usb_ram64x8

i_rx_phy (3)
usb_rx_phy

i_pa_sic
ush_pa_sic

i_pd_sie
usb_pd_sie

N

i_cres i_crel6(2)
usb_crc5 usb_crc16

i_pe_sic
ush_pe_sic

i_fi2
usb_fifo2

i_crel6
usb_crc16

Figure 3: Visualization of the module hierarchy of a USB controller

5 Conclusion

Structural SystemC extraction is needed by many problem domains. We present SystemCXML that
avoids the creation of a full fledged parser that handles the expressive power of C++ by the usage
of Doxygen, breaking the problem down to parsing XML with widely available libraries. To our
knowledge there is no existing solution that utilizes a documentation system to facilitate the extrac-
tion of structural information targeted towards applications such as introspective architectures, test
generators and visualizations. This is a very lightweight solution, that employs C++ and does not
restrict the use of the compiler or any modifications in the SystemC libraries remaining unintrusive.
Our approach is built to be easily extensible; adding a backend pass for the module hierarchy graph
generation only took about 60 lines of C4++ code. There are many applications that can benefit from
exploiting structural SystemC information, among them we have looked into visualization, automated
testbench generation, and introspection [5] and are currently working on the generation of synchronous
component interfaces. As we judge the tool to be easily useable and very beneficial for other research
groups and companies, we made it available under an Open Source license available at [10].

References

[1] Cadence. Incisive Functional Verification. http://www.cadence.com.

[2] Open Cores. Free open source IP cores and chip design. http://www.opencores.org.
[3] CoWare. ConvergenSC. http://www.coware.com.

[4] Doxygen Team. Doxygen. http://www.stack.nl/~dimitri/doxygen/.

[5] Hiren D.Patel, Deepak A. Mathaikutty, David Berner, and Sandeep Shukla. CARH: An introspective and service oriented
architecture for validating system level designs. Accepted for publication in IEEE Transactions on Computer-Aided Design.

[6] Edison Design Group C++ Front-End. Edison design group c++ front-end. Website: http://edg.com/cpp.html.

[7] Emden R. Gansner and Stephen C. North. An open graph visualization system and its applications to software engineering.
Softw. Pract. Exper., 30(11):1203-1233, 2000.

[8] GreenSocs. Pinapa: A SystemC front-end. Website: http://greensocs.sourceforge.net/.

[9] T. Groetker, S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer Academic Publishers, 2002.
[10] D. Mathaikutty, D. Berner, H. Patel, and S. Shukla. SystemCXML SystemC Parser. http://systemcxml.sourceforge.net.
[11] Emmanuel Pietriga. Zgrviewer - a 2.5D graph visualizer for the DOT language. http://zvtm.sourceforge.net/zgrviewer.html.
[12] W. Snyder. SystemPerl. http://www.veripool.com/systemperl.html.
[13] The Apache Software Foundation. Xerces C++ validating XML Parser. Website: http://xml.apache.org/xerces-c/.

