Validating Families of Latency Insensitive Protocols

Syed Suhaib, Deepak Mathaikutty, and Sandeep Shukla David Berner
FERMAT Lab INRIA-IRISA
Virginia Tech Campus Universitaire de Beaulieu
Blacksburg, VA-24060, USA 35042 Rennes, France
Email: {ssuhaib,damathai,shufi@vt.edu Email: david.berner@irisa.fr

Abstract— With increasing clock frequencies, the signal delay (GALS) systems based on the earlier LIPs has been proposed.
on some interconnects in an SoC often exceeds the clock petio |n [8], further simplification that obviates the use of sfieci
which necessitatesatency insensitive protocols (LI Ps). Corr.ect.ness. protocol circuitry has been proposed. Although [5] offers a
of a system composed of synchronous blocks communicatingavi th tical f of t f thei . fLIP
LIPs is established by showinglatency equivalence between a ma ema_ 'Cf':‘ Proo 0 Correc_ ness of therr yerS|0n 0 S,
completely synchronous composition of the blocks, and thelp When optimizations or extensions are made in the subsequent
based composition. Every time a new LIP is conceived, they rd works, no such formal proof is usually offered. Due to the
to be debugged and then proven correct. Mathematical theoras sybtleties involved in the optimizations, it is plausitiat the
to establish correctness, though elegant, are error proneand a\y)y invented LIPs have serious flaws. We have experienced
tedious to create for every new variant of LIPs. In this work, this i it s t timize Carloni’ i 13
we present validation frameworks for families of LIPs, both for IS In our attempts 1o op |m_|ze arloni's protocol [3], [#s
dynamic validation, useful for early debug cycles, and forral @ result, we felt that there is a need for a framework where
verification for formal proof of correctness. We believe ths is a these protocols can be quickly modeled and validated either

useful framework in the hands of designers trying to create Bw dynamically or statically through formal verification. Bhis
LIPs or optimizing existing ones for design convergence. the motivation for the current paper

|. INTRODUCTION A. Solving the Long Interconnect Problem

In the current and upcoming System-on-a-Chip (SoC) de-Several approaches have been proposed to deal with the
signs, intellectual property (IP) reuse is gaining inciegs problem of long latencies in global physical chip intercon-
importance. Reusing pre-existing modules such as memoriescts in SoC design. One is a family of latency insensitive
processor cores, and dedicated hardware blocks chosen frootocols (LIP) as in [5], where all modules are encapsdlate
an IP (Intellectual Property) library seems to be the only wawith control logic blocks and possibly relay stations on the
to mitigate the problem of productivity crisis and shorteni interconnects to make these interconnect delays trangpare
time-to-market cycles. Therefore, a significant part of §5o&€ the actual IPs. Another is to create packet based networks on
design problem is in correct composition of these existirg la chip (NoC)s, also targeted at interconnect latencies [9].
blocks [1]. However, what makes this more problematic is However, designing the composition of IPs necessitate a
the fact that with the ever increasing clock frequencies, thefinement based design flow. In such a design flow, a syn-
synchrony assumption between IP blocks stops being val@hronous model [10] of the system can be built where all in-
As the clock frequencies have crossed multi giga-hertzeangerconnect latencies are assumed to be negligible. THmfs|
the clock period is too small for two communicating blocks trom the synchrony hypothesis used in clock-synchronous
communicate signals across a long interconnect within sulcshrdware design, namely, communication latencies are neg-
small clock period. This is because some interconnects diggble. From this synchronous model, necessary refinesent
longer than the distance a signal propagates during a singte made to the design to render the design latency insensiti
clock cycle [2]. This problem has recently came into focu@.l). The correctness criteria is that the LI designlagency
through a series of papers [2], [3], [4], [5], [6], [7], [8]. equivalentto the synchronous design. Informally, latency

Although, a number of protocols, termed as Latency Inseaguivalence has to be first defined on signal pairs and then
sitive Protocols (LIP)s have been published in the litexgtu to process/system pairs. Two signals are said to be latency
no formal framework has been created to validate thesquivalent if the sequence of valid arformative events on
protocols. The reason why one needs a framework whdhe two signals are identical. In other words, if an observer
variants of these protocols can be quickly validated eithebserves the order of events on two signals, then discauntin
through simulation or through model checking is as followsempty’ events, the two signals will look the same. Since
These protocols are going through a continuing evolutiggrocesses can be thought of as consumer and producer of
phase. For example, [6] attempts to optimize and improewsents on signals, the same notion can be extended to systems
the protocols described in [2], [3], [4], [5] to obtain a moréfwo system models are latency equivalent if their outpugs ar
efficient and simpler protocol circuitry. In [7], a new prot latency equivalent given both are subjected to the same (or
for pure Globally Asynchronous and Locally Synchronoustency equivalent) input sequences. Latency equivalésce

formally defined in the preliminary definitions Section IV. SoCs [3]. In their approach, all modules are encapsulated in

There are many ways one can ensure correctness of LIRsyrapper to form a “shell” that is latency equivalent to the
and LI systems. Dynamic validation can be used to shasetual process, without having to modify the internals & th
that a system using LI techniques is latency equivalent¢o tbriginal IP. This encapsulation is done by composing each
completely synchronous model of the system which assun@®cess with an equaliZerRelay stations are added along
zero delay communication. Although dynamic validation ithe long interconnections. They act like pipeline blocks to
appropriate for flushing out protocol design errors, sudidaa store and forward data, and contain at least two registets an
tion only covers for certain input sequences. Therefonen& control logic. Once the requirements of these relay statare
verification is a more desirable validation mechanism. bteor determined based on the long interconnect in the initiatgla
to formally verify such protocols, the LI system as well aand route, then placement and routing are done again with
the synchronous idealization have to be modeled formalije relay stations. Several iterations for placement anting
and the latency equivalence has to be captured as a formmaly be needed in order to get a configuration that satisfies
property. However, our experience is that model checking adl interconnection constraints. In this paper, we refethis
very resource consuming [11]. Another way to confirm thapproach aselay-station base@pproach.
correctness of such an implementation is to mathematicallyln [8], we propose a different approach, which disposes
formalize it, as done in [5]. But mathematically provingof the relay-stations by adding some interface logic and
the equivalence of two systems is a challenging task amdring. While this approach requires more wires, it does not
not beyond mistakes. It requires complex mathematicalfproancrease the number of components that have to be placed, and
that are not straightforward to follow by others who want ttherefore uses less iterations for the placement and i
confirm them, hence every new variation of LIPs cannot lmall this thebridge-basedapproach. Instead of placing relay
validated easily using mathematical proof techniques.biést stations along the long interconnects that connect two hesdu
way is to provide designers with an easy to use frameworkwe place abridge process at the interface of the modules. A
model and validate their protocols. bridge is a composition of two processessplitter at the

In this work, we propose a framework for validatioroutput of a “shell” and amerger at the input of the other
of such systems. We target formal verification as well &shell”. The splitterandmergerprocesses are formally defined
simulation based techniques to verify the LI systems in oin the preliminary definitions in Section IV.
framework. For formal verification, we use the SPIN model All components of such LI designs are synchronous. The
checker to verify the correctness of an LI system, wherehk systems presented are targeting SoCs with a single mas-
for the simulation based technique, we use a function@r clock. Singh and Theobald generalize the LI theory for
programming based technique to validate the LI system. V@obally Asynchronous and Locally Synchronous (GALS)
contrast the two techniques and find that the SML basegstems [7]. In their approach all input and output signads a
simulation for validation is a more convenient way to val@a controlled by complex FSMs implemented in the wrapper. The
the framework, especially for debugging the early versioihs communication network is implemented as an asynchronous
the protocols. system to connect modules with different clocks. Overall

this approach is associated with heavy penalties in terms of

Organization: This paper is organized as follows: In Secimplementation costs and performance.
tion I, we discuss some related work. In Section Ill, the LI Casu and Macchiarulo show how to reduce chip area com-
refinement methodology is illustrated followed by Sectidh | pared to Carloni’s approach [6]. They use a smart scheduling
where we introduce the preliminary definitions and notatioralgorithm for the functional block activation and subsgttu
used in the paper. We also formalize the components of tteday stations with simple flip-flops. One disadvantage & th
LI protocol in this section. In Section V, we describe ouapproach is that the schedule has to be computed a priori and
framework along with its implementation in PROMELA anddepends on the computation in the process. If any change is
SML followed by conclusion in Section VI. made in any process, it may result in the change of the flow
of tokens and may result in inconsistency with the current
scheduling algorithm. In this case, the schedule has to be
ecalculated, which is expensive. We propose a validation
ramework for such LI protocols where they can be easily

B. Main Contributions

The main contributions of the papers are as follows:
o Development of a framework for validating families oti

LIPs. | modeli d verificati ¢ a familv of LIPS i checked for correctness. We use two different techniques fo
¢ ggma modeling and verification of a family o S Nyalidation: Formal verification using SPIN and SML based

lidation. This f k helps i lidati h praitsc
« Modeling and simulation based validation of LIPs usin(\éfl aton 'S Tramework nes In varcaring sueh pr

. . at are continuously changing and evolving.
a functional programming framework.

IIl. DESIGNFLOW TO LI REFINEMENT
II. RELATED WORK

There are several anproaches on how to create LI desian In this section, we describe a transformation procedure to
: v bp o S %e%ine a synchronous system to an LI system shown in Figure 1
Carloni et al proposed a “correct-by-construction” metho

ology to design latency insensitive systems for single kcloc The functionality of the equalizer is defined in the preliemin section

as a flow diagram.

IV. BACKGROUND AND PRELIMINARY DEFINITIONS
In this section, we give the background for the SPIN model

Step 1 Stept checker, functional programming as well as definitions we us
Collection of
;“3’:‘?&2?5:"?; roor pramng ane throughout the paper.
it i interconnect routing A SP'N background
| . .
Step 2 SRSy SPIN [12] is a model checker used extensively for formal
- Refinement of e
Floor planning long | verification of systems. SPIN is used to trace logical design
s interconniects errors and to check the consistency of specifications. Ligstm
g Step 6 L model checkers, SPIN also verifies a system for all exhaistiv
;mgg:rgﬂ paths. Its basic building blocks include asynchronous pro-
il . .
No routing cesses, message channels, synchronizing statements;uand s
—< Y tured data. We use these basic blocks to write synchronous
models. The communication is done through shared global
l"“ Yes variables. Since the processes run asynchronously in S#N,
Step 3 Any Long . . .
—— terconnects synchronize the execution of all processes in order to make
all modules | | our model behave synchronously. We illustrate and explain i

with block of
control logic

» Done

Fig. 1.

Refinement steps to LI implementation

The steps to LIP refinement are as follows:
1. We start with a collection of synchronously communicaBML provide a clean and simple semantic model, which
ing components. These components can be custom-mageforms all computation by function application, thereby
modules or IP cores.

detail the model of the clock controller at a later stage i th
paper.
B. Functional Programming

In [13], we have presented a functional programming based
framework for system modeling created on top of the Standard
ML (SML) [14] language. Functional languages such as

providing a more abstract notation to express computation.

6.

Once these synchronous components are composed toge
to form a latency insensitive system, our next goal is to khe
if the new LI system is functionally correct. Before we tal
about the framework for validation for LI systems, we wil

Floor planning and interconnection routing are done @ur dynamic validation framework, we model the idealized

check for long interconnects. If all communication casynchronous model as well as its LI version and compare
be done in a single clock cycle, then there is no nedwth the models by feeding input streams to both modules
for LIP refinement. together and comparing their outputs for latency equivaen

If long interconnects are present then all modules afée reason this framework is used will become obvious as
encapsulated with a block of control logic. This encapsive provide the definitions of various components of the LIPs
lation includes logic that controls the flow of the eventdp the subsequent sections. All the definitions can be rgadil

buffers, control stations, repeater stations etc to enaligeognized as recursive function definitions which can be
correct transmission of data. directly mapped to SML.

Estimation using floor planning and interconnect routin@

is done again, this time with the encapsulated processes : o ,
to relocate and evaluate the delays on the long interconJn this section, we show some of the definitions we use in

nects. the rest of the paper. Lat be the set of data values arif,

Preliminary Definitions

. After finding the delays on the long interconnects, tHae a countable set of time stamps. Unless otherwise specified

designer can then segment those long interconnellsthiS paper, we assumi = N = set of natural numbers.
with additional processes containing buffers, latche§n evente € V' x T'is an occurrence of a data value with a
forwarding stations, etc to ensure that data is prOpeﬂj&artmu!ar time stamp. However, in the systems we consider,
communicated through the long interconnects. Depen@-SPecial event calledbsent evendenoted byr may occuf.

ing on the delay of the interconnect, the events can B&erefore, the set of all events is denoted Bywherer ¢
compared from the point they are placed on the signkl @nd for all othere € E, e € V x T. Whene € V' x T

to the point they leave the signal. it is called aninformative eventA signal s is defined to be a
Floor planning and interconnect routing is done again §&duénce of events, often denotedases . .. wheree; € E.

ensure that no long interconnects exist in the system. For the preliminary definitions, if is a signal,s[i] denotes
%?‘“‘ event, hence eithes[i] € V x T or s[i] = 7. The set

Q all signals is denoted by. The signals can be either input
ignals or output signals of a process. We also distinguish
tall signalsfrom all signals in the system. A stall signgl

first look at the baCkground of the two validation teChniqueszlt may be caused due to lack of valid data in the producer ortdube

we use and present some preliminary definitions.

consumer’s request to delay a transmission

is a sequence of boolean events, ig[i] € Bool x T. The signals and a stall signal, it producesoutput signals ana.
set of all stall signals is denoted k. In our system, IPs stall signals. The functionality of the equalizer can bddid
are hardware modules that map input signals to output signahto three modes:

therefore in this paper we refer to them as processes. A gsoce
p is a functionS™ — S™ wheren, m € N. A synchronous

1. Disable modeln this mode, the equalizer is stalled by
the another process through an input stall signal. The

system consists of these processes where communication and equalizer sends absent events on all its output signals

computation happens at the global clock. The communication

and enables all the output stall signals using function

among these processes is assumed to be zero-delay and each |nsertSti(shown in Definition 8).

process takes one cycle for computation.
In the remainder of this section, we define a few terms and
notations that are used throughout the paper.

Definition 1: Givens € S ande € E, we definee ¢ s = s
wheres’ = e :: s, S.t.e is the first element and is the rest of the
signal.

Definition 2: Given one tuple ofin elements and another of
elements(®) creates a tuple ofn + n elements.
<aty.eeyan > <biy.obym >=<ai,...,an,b1,. .. by >

Definition 3: Given two tuples of: events anch signals respec-
tively, €D creates a tuple of signals with an event appended to each
signal.
<etly..,en > <s1,...,8,>=<e1Dsa,..

Definition 4: Latency Equivalence
The two signalss; and s. are said to be latency equivalent, =.
s < F(s1) = F(sz2), where

F S — S be defined asF(s) = o(s,1,n) and,

-76n@3n> (S

{ o(s,i+1,n), if sli]=1
o(s,i,n) =< sli, if (1=mn)
sli) ® o(s,i+1,n), otherwise

F takes a signat as input and outputs a signdlthat contains

no 7 events, but preserves all informative events. The helpery,, ..t pot = T7

function o takes the signak, n which is the length of the
signal s and the initial index 1 as parameters.is defined
recursively with the following cases: If the event at cutren
index isT, theno is called with the index incremented. If the
event is notr and the index reaches the length of the signal,
then o terminates by returning the last event, otherwise the
informative event at thé'" position is returned withr called

to check for the next event.

Givensa, .

2. Absent modeln this mode, the equalizer receives an
absent event on one of its input signals and its input
stall is disabled. The equalizer sends absent events on all
its output signals and stalls only those processes from
which it received an informative event using function
InsertAbt(shown in Definition 8).

Present modeThe equalizer receives informative events
on all its input signals and its input stall is disabled.
It places these informative events on the output signals
using functioninsertEvt(shown in Definition 8).

Definition 8: Equalizer
..,8n € S ands; € St, the equalize€: (S™ x St) —
" x Sr™) is defined as:
E(s1y. -, 8n,st) = eval(si,.. , 1)
where,
eval(S1, ...y Sn, St1 11 St2,01, 02, .. .
if (s¢1 = false) then
if (371 (sji;]) = 7) thenInsert Abt @@ evalnextindex
elseInsertEvt @ evalnextevent
elseInsertStl @ evalnextstall

> O Yi=i(expi(j))
O < false,..., false >
> O < true,...,true >

'73717'375717"'

7Zn) -

InsertAbt = < 7,7,...,T

f=1(8;1i5]
InsertStl = < T1,7,...,T

evalnextindex = eval(s1, -+, Sn, St, i1 (expa(j)))
evalnextevent = eval(si,- -+ , 8n, 8¢, Yj=1(i; + 1))
evalnextstall = eval(s1,- -+, sn,st, Yi—1(exp2(4)))

(sjle
(s,

) = 7 then false elsetrue
) = 7 theni; + 1 elsei;

exp1(j) :
exp2(j) :

it (s;045]
it (s;45]

Sj
Sj

Definition 5: Sequential composition The equalizer is defined using a helper function! that takes

Given two processeg;: S* — S, p2: SY — S¥ andsi, -, 8y € . : Sl e : .
S, we define the sequential operatoas: " sclignals, a sta]l Slglnal a(r;;j 'mtlllal !ndlcles fohr e‘f"c.h Ilrlpg(';'}al
p2opi(s1, -, 8u) = p2(p1(s1,- - ,5u)) and returnsn signals andn stall signals. The initial indices

are given assuming that the first event for each signal isat th
position.

Definition 6: Feedback composition[10]
Given a procesg: (S x S) — (S x S) ands;, s;, s, € S, we define
the feedback operatdr' B, (p) as: In the bridge-basedpproachsplitter andmergerprocesses

FBp(p)(si) = s, wherep(si, s;) = (s; are placed for communication of data through the long inter-

The signals; is an internally generated signal and the beha\/i%f)nnects We compose these two processes to fobmidge

‘?f the feedbac.k process is defined using fixed point Se,r,nEH?bcess as shown in Figure 2. Theidge not only ensures
tics [10]. For simplicity, we define the feedback COMPOSIIO., ot flow of events from one process to another, but also

for a specific process with two input and output signals, §iou o\, res that the delay in between the events is minimized.

ietlr(l:(?r:n?te Etzs”y generalized for processes with multipleiisp g, bridge process has one input signal and one output
Definirt)ion 7: A vectorization functionY, (exp(i)) is defined signal. .
that evaluates the expressienp(i) for i from 1 ton. ~ The splitter and themerger process are connected by
Y (exp(i)) = < exp(1),exp(2),-- - ,exp(n) > interconnects where is the delay on the long interconnect.
where,exp(k) is a textual replacement afby k in exp(i). Hence, thesplitter process has output signals. This process
In this work, we are targeting thleridge-basedapproach, contains simple placement logic for the placement of events
where all synchronous modules are encapsulated with @mthese: signals. The splitter is implemented at the output of

equalizer An equalizer £) is a process that given input a process, and it places events on the corresponding signals

£ ext((z1 Y1, oy Tn 3 Yn), My 1) =

Spiter [1o T perger rem((z1,..,xn),n,1) ® ext((y1,..,yn),n, 1), i=n
‘ ' rem((z1,..,xn),n,3) ® ext((y1,..,yn),n, i + 1), otherwise

1
\

Fig. 2. Bridge The merger is defined using the helper functiart that
takes as parameters the signals. . ., s,,, delay of the signal

. . n and the index of the first signadxt extracts the informative
The splitter only places one input event on one of the output : - .
ent from the appropriate signal and places it on the output

interconnects and absent events are placed on the rest of the . . ih
. . . ; .__sighal using theem function.remreturns the event at thé
signals at a particular time stamp. Assuming that thereiaré * .-
. . . , position.
events on the input signal of the splitter, at every cycle;th
event is placed on the" signal based on a rotational scheme. V. FRAMEWORK FOR VALIDATION
For example, if the delay on the interconnect is 3 cycles) the

in the current cycle, the first element will be placed on tht%

f'.rSt sllgn?l ?ﬂd abs?nt e\I/en'Ef] will be %Iaced (t)n t_nebothelr e synchronous system. We propose an easy to use framework
signais. In the next cycié, the second event will be place r validating such LI systems. In this framework, we model

on the second signal and absent events will be placed on IRE L system along with its synchronous idealization and

first and third signals and for the third event it will folloyv rovide the same input signals to both the systems. These

thelsc?hen}e. At\;‘]ter th? th;lrcél) eant '3 platt:r?d,f_lntthe folllowm put signals can also be latency equivalent. We then model
cycie, the Tourth event will be placed on the Tirst signal agal, | Eqcomparator process which is a reduced version of the

This rotation scheme will continue for the rest of the evem%qualizerprocess Similar to the equalizer, Bxg-omparator

'li'lezvl\‘ll.mctlonallty is illustrated by the formal definitiohawn process reads the informative events from the output sgsfal

It is essential to validate the functionality of the LI syste
at is formed by composing the components of the LIP with

Definition 9: Splitter the two systems. The informative events on these signals are
Givens € S, the Splitter : S — S™ is defined as: compared and checked to be latency equivalent. In the case
H(s) = spread(s,n, 1) when an absent event is seen on one of the output signals,
where, it is discarded and the next event is considered on the same
place(z,n,i,1) @ spread(y,n, 1), signal. The informative events on the two output signals are
spread(z = y,n,i) = ifi=n compared in sequence to ensure correct functionality.

place(z,n,1,1) € spread(y, n, i + 1), Using this framework, we can take any system and its LI

otheruwise implementation and validate it for correct functionality b
insert Abt(n) :{ T if n=1 latency equivalence checking. This framework can be used
TQinsertAbt(n — 1), otherwise for any proposed LI protocol to ensure the correctness for
z (insertAbt(n — j), ifi=1 the system. For example, Casu and Macchiarulo’s proposed

place(z, n,i,j) = { O place(x,n,i—1,j+ 1), otherwise approach for optimizing and using a scheduling algorithm to

control the flow of tokens can be easily checked for corresgne

) _ i)) as the scheduling may change depending on the change of
The splitter is defined using a helper functigpread(s,n,1) functionality of the system.

that takes three parameters which are the signalelay on We have validated various examples of LI systems using

the interconnech a_nd initial index of the signak. spread. our framework with two different approaches. We model a
uses theplace function to send an event on the appropriatgchronous system and its LI implementation in PROMELA.
output signal. The funq‘ggpl_ace puts7 on all signals USING Then we formally verify it by placing an assertion in the
msertAbtexc_ept for _the‘ signal on which it places thé Eqcomparator process. The assertion property states that
evgnt of the '”pur;‘ S|gn?l. ol N the informative events from both systems are equal provided
K ontra_lry to t N |Sp |tt((ejr, we 1mp emef‘t a;er_lgﬁrt at they are given the same input sequence. We show how we
ta|1 esn Input signals anf OUtF;]UtS_ one s_lgnall. b € dmerg% lement the component required for refinement to LI system
also extracts one event from the Input signais based on H he following section. We also present another simulkatio

rotational scheme as illustrated earlier and places it @n t ased validation approach using this validation setup & th
output signal. The functionality of thenergeris formally SML framework

defined below:
A. SPIN based description
Definition 10: Merger

Givensy,--- ,sn € S, the mergetM : S™ — S is defined as: In SPIN, the communication among the processes is implg-
M(s1,...,8n) = ext((s1,...,5n), 0, 1) mented through global shared variables. A process may write

where, to a variable and another may read from the same variable.
, , if i=n Since, the SPIN model checker targets mainly asynchronous
rem(z i y,n, 1) = { rem(y,n,i+ 1), otherwise systems, and to model a synchronous system, we introduce a

clock controller process that controls the reading andingit
of these variables for every clock. Hence, we divide the The PROMELA code of the splitter process is shown in
working of the processes into two phases, the read phdssting 2. We assume that there is a two clock cycle delay
and the write phase. In the read phase, the processes madhe interconnect where the splitter is placed. A temporar
the values from its shared variables and in the write phas@riable place is defined that places the events from the
new values are written on those variables. It is assumed tirgtut signals to eithesignalO or signall, depending on the
the communication is done in zero-time and all processesrrent value of theplace. These two signals connect the
work concurrently as modeled. Temporary variables such gglitter and the merger. Thglace variable keeps changing
done; are used to denote the reading phase (when 0) @rery clock cycle.
writing phase (when 1) of proced3. Unless all the process
complete reading or writing, depending on the phase, thekclo
controller will not change the phase. Listing 2: PROMELA code for Splitter
In PROMELA, an equalizer process and its compositiqQ

with its original process is modeled. The PROMELA code o .
for the equalizer is shown in Listing 1. In the implementatio {Comment: The code for the splitter is presented below. THitesp

h that it i d with ith t is placed at the output of synchronous module connectingh¢oldng
S own, We assume that It Is composead with a Process W' WGhterconnect. For this implementation we assume that tieedonnect delay
inputs signals. The SPIN model of the equalizer consists ofs two cycles. The synchronization is done when the modutpus. The
two temporary buffers for each S|gna| to store the valuefen t placement variable calleglace is defined s.t whemlace == 0 then the
. event is placed omignalg, otherwise it is placed orignal; }
incoming signals. We also declare variabtdid; which keeps
the track of the number of informative events in the buffer proct ype Splitter() {
for signal;. In every clock cycle the equalizer reads a value __int place=0;
during the read phase and store the value in the temporarf/mp'SynchromZe with process.
variable. As the value is stored, thel:d; is incremented for if
that signal. In the write phase of the same clock cycle, the U place == 0 — place=1;

lue is written on the output provided the buffer count (i.e Place event ofsignalo

va ’ put p) . : Place absent event arignal;
valid;) is greater than 1 for all signals. Otherwise an absent O place == 1 — place=0;
event is placed on all output signals. The logic for the outpu E::gg Zﬁigqugéiﬁf& l
stall signals of the process are based on number of infovenati ;. gnato
events on the buffer (Functionality of the equalizer is présd goto loop; }
in Section IV-C).

The PROMELA code of the merger process is shown in
Listing 1: PROMELA code for Equalizer Listing 3. In this implementation, similar logic is used tead
the values from the two incoming signals. Thiece variable
is offset in this module based on the delay on the intercannec

{Comment: The code for the equalizer is presented belowattype s==1 ~The values read from the signals are then placed on the output
means that event omignal 4 is informative. There are two temporary
buffers for each signaltempl 4 is the first temporary buffer for signal o .
A and temp2 4 is the second temporary buffer for signal A. The variable Listing 3: PROMELA code for Splitter
stall == 1 denotes that the equalizer is stalled.

proct ype Equalizer(){

int validsy , valids: {Comment: The code for the merger is presented below. Theeamnésg

loop: placed at th(_e input of synchronous module on the long intmept. The
.Synchronize reading with other processes. syn_chronlzauon is done when the module read_s. dheract variable is
/* START OF READ PHASE */ defined s.t wherexztract == 0 then the event is taken fromignalo,
if otherwise it is taken fromsignali }

O (eventtypea && wvalidy == 0) — validy ++;
Store value intempl 4
O (eventtype 4 && wvalidy == 1) — validy ++;
Store value intemp2 4
O (leventtype o && walid; == 1) — templ s = temp24
Oelse — skip

proct ype Merger() {
int extract=0;

loop:
Synchronize with process.
if

fi: O extract == 0 — extract=1;
’ . . . o Extract event fromsignalg
% *
/* Signal B can be written in a similar way */ O extract == 1 — extract=0;

Synchronize writing with other processes. .
/* START OF WRITE PHASE */ i Extract event fromsignal
if SnipsTATE [(valid; > 0 && wvalidy > 0 && ! stall) — .
validi—; valida—; goto loop; }
Place events on output signals
ﬁD_e'SG—’ Place absent events on output signals ; We formally verify the assertion for latency equivalence
Set output stall signals based onlid; values using the SPIN model checker for an example with two
goto loop; } processes as shown in Figure 3. The example is of a simple

parity checker that checks if the input is a 1 or 0. The output info(x1:[]) = i f (x1=1)t hen true el se false|

of the system is based on the previous input's value. info(x1:x) =i f (x1=1)then info(x) el se false
val allevents = e(s,i) *Events fromall signal s*/

val allinfo =i f info(etypes(allevents)) = true

then true else false

/*True when all events are informative*/

f un stalloff(0) = [] | stalloff(n) = [1] @ stalloff(n-1)
f un stallon(0) = []] stallon(n) = [0] @ stallon(n-1)
fun flipval(x) =i f x=1then 0 else 1
fun stallset([]) =[] |
;L : stallset(x1::x) = [flipval(x1)] @ stallset(x)
1-cock cycle ’ val el = [allevents,[stalloff(length(allevents))]]

P val e2 = [tauevents(length(s)),[stallset(tags(allevents))]]
_ val e3 = [tauevents(length(s)),[stallon(length(allevenis))]
(case(stl) of

1 => (if allinfo = true

then ([el] @ f(s,st,!ncindex(i)_))

An alternative to using formal verification, we use a simula- el se ([e2] @f) f(s,st,incempty(i,etypes(allevents)))))
tion based technique to valide the LI systems in our proposed ?_;>> ([[]§3] @ f(s.sti) —
framework. We model this framework in SML and simulate end
for various test vectors.

B. SML based LIP description '!'h_e next stage of the refinement methodolegy involves
hi . d ibe th ¢ th refining the long interconnects by inserting the bridge pssc
In this section, we describe the components of the bl,g jejay on the bridge is modeled by thelayproc process
framework and its implementation in SML. A finite signal is, just delays the events by cycles, wheren is the

modeled as generic list, whereas an infinite signal is vvritteJlelay on the interconnect. The SML implementation of the

as delayed function application. In SML, for our conven&encsplitter process is shown in Listing 5. An input signal and the

\f/ye forlmulate an Event Ito be %I'Sht of two ecljen?ents, w_r:jere ,;Eﬂﬁerconnect delay is given to thelitter process. One event
irst element Is the value and the second element IdentifigSe o from the input signal angisertevent function places
whether the event is an informative event or an absent ev event from the input signal to one of the interconnects

o : th ; .
(€9.¢; = [3,1] is the;™" event with 3 as the value and 1 as,,q ghsent events are placed on rest of the interconneas. Th

the identity of the everi). Hence, a signal can be formulated, ats are placed in the rotational scheme as illustratdi¢rea
as a list of events. (egy; = [[1,1],[2,1],[3,0],...]).

Following the earlier mentioned refinement methodology,
we first encapsulate the synchronous components with an
equalizer. The SML code of the equalizer is given in Listing &
The equalizer reads one event from all the input signals of ,, spjitter(n) = n s = (s, 1.n)
a process along with an event from the stall input. It thenfun f({,) = [| f(x1:x, i, n) =
checks if all the events at a time are informative. The checK et
for events is done through theypes andin fo functions. The

Fig. 3. LI system with Bridge

Listing 5: SML code for Splitter

f un insertevent(,j,0) =] |
insertevent(y1,j,n) =i(f n=j

functionality setting the stall values f@isable modas done t hen [yl] @ insertevent(y1,j,n-1)

by the stallon function and the output is given by3. The el se [[0,0]] @ insertevent(y1,j,n-1))
stall values when the equalizer is @bsent event mode set n it (i=n)

by stallset function and the output is given by2. Finally, t hen [insertevent(x1, i, n)] @ f(x, 1, n)
the valid modeoutput is given byel. The equalizer process el se [insertevent(x1, i, n)] @ f(x, i+1, n)

is then sequentially composed with the synchronous proces%n
to form the shell of the process.

The SML representation of the merger is shown in Listing 6.
The extractevent function extracts one event from all signals
at a time. Extraction of events from the signals is done in
similar way as they are placed on the interconnects by the

Listing 4: SML code for Equalizer

fun equalizer() =fn s=>fn st => splitter.
f(s, st,indexstart(length(s))
funf(lstizst,) =[] [f(-[l.—) =0 [(-0 =10 | Listing 6: SML code for Merger
f(s,stl:st,i) =

| et

f un etype(x1::x2) = x2| etype([]) = nil

fun etypesf] =[] fun merger(n) =f n s => g(s,n,1)

etypes(x1:x) = etype(xl) @ etypes(x) fung(n i) =0 | g(xiix, n, i) =
fun info [] = false | | et

f un extractevent([],n) = []| extractevent(x1::x,n) =
31 corresponds to an informative event and O corresponds absent event (case (n) of

1=>x1| system for correctness for all possible paths. This aproac

- -- => extractevent(x, n-1)) may be time consuming but would ensure complete validation
it (i=n) of the system. On the other hand, the SML based simula-

t hen [extractevent(x1,i)] @ g(x, n, 1) tion had its own set of advantages. We found SML based

el se [extractevent(x1,)] @ g(x, n, i+1) simulation validation to be an easier way to find the bugs

end in the protocol at an earlier phase of the design process

by simulating the framework with a set of test vectors and
We compose all the components of the system after thgecking for the correctness of the system. Also, due to the

refinement. The input sequence of the splitter and the outpyterent denotational semantics of functional languages,
sequence of the merger are equivalent, since the order v nq it easier to formalize such a framework. We realized
written by the splitter on the output signals and the order ofinat the formal definitions of the components of LIP could
events read by the merger from itdnput signals is the same. ;o naturally mapped to SML. Hence, it was easy to model
Therefore, the flow of events from the output of one shehe framework in SML. Also, the component of the LIP were
across the long interconnect to the input of the correspndiyade generic such that they could easily be reusable with
shell is maintained. As the stall signals are dependent en th,, component. It also helped in making the models open to
events received in the previous cycle from the processesd@eansion without making many changes.

which these stall signals are connecting, they operate on gye aiso experimented with multiclock LI systems using our
feedback semantics. We use the fixed point operator definggnework, but due to lack of space we do not show the details
in the preliminary section to implement the feedback. in this paper. A possible extension would be to modify the

For this SML framework, we consider a larger case study protocols to GALS system such that they could be easily
of an adaptive modulator that consists of three IPs: regulatgjigated in the framework.
convolutor and analyzer. The regulator module takes antinpu
signal and a control signal and outputs based on the control REFERENCES
signal by adding a threshold value. This output is then mulm] M. T. Bohr. Interconnect scaling - the real limiter to higerformance
tiplied with a masking value by the convolutor module. The | E'SISI-ICEEIE Int. EliCthg Devices l\/_le\?tmgpeigﬁ_s 2C41—_24_?H |15195- _

.P. Carlonl an .L. Sangiovanni-vincentelll. opivg atency Iin
output of the system is given by the_ amplitude signal. _Th SoC design.IEEE Micro, Special Issue on Systems on CHp(5):12,
analyzer module outputs the control signal based on th& inpu oOctober 2002.
of the amplitude. Due to lack of space, we only show som&]l L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovarvincentelli.

. . . L A methodology for correct-by-construction latency inséve design. In
code snippets In this paper. However, complete code I|st|ng In Proc. International Conf. Computer Aided Verificatjopages 309—
can be downloaded from [15]. 315, November 1999.
In order to check the correctness of the LI system, we setufl t'z Carloni, K,-t L MCtM'"é;”' alg‘it hA-l If Set‘_”g'ol"ag”"]}/"me“'-

. . . atency Insensitive protocols. nternatonal onterence on
the two systems as described by our validation framewprk. We Computer-Aided Verificatignvolume 1633, pages 123-133, Trento,
feed the same input sequence to both models and validate for Italy, 07 1999. Springer Verlag. ‘ o _
the latency equivalence of their outputs. We have implestent [5] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentell The Theory

. . . . oo . of Latency Insensitive DesignEEE Transactions on Computer Aided
this LI system for a finite signal input as well as for an infnit Design of Integrated Circuits and Syste@0(9):1059-1076, 2001.

signal input. For finite signals, we can see the output of thg] M. Casu and L. Macchiarulo. A new approach to latency msstéve

Eqcomparator process for as many input events given. In the7 Sleségn-r:aniSﬁ”TﬁUtoé"?é'onG Confel,fengﬂloto“- sarsisySiems |
T . . .olngh an . eobald. Generalized latency-Insaresisystems tor

cage of infinite signals, we (_:an Che.Ck_ fF’r the des_lred number single-clock and multi-clock architectures. Design, Automation and

of input values as computation for infinite values is based on Test in Europe (DATE’04)2004.

delayed function application. [8] Syed Suhaib, David Berner, Deepak Mathaikutty, JeamrEi Talpin,

and Sandeep Shukla. Presentation and formal verificatiom family

of protocols for latency insensitive design. Technical &ef2005-02,
VI. CONCLUSION AND FUTURE WORK ngnia Tech, 2005, Y 9 =

In this paper. we propose a framework for validation of I_|[9] Luca Benini and Giovanni De Micheli. Networks on chip: Aew
paper, prop paradigm for systems on chip design. Design Automation and Test

systems. The LI systems along with their synchronous ideal- in Europe 2002.

ization can be modeled together and checked for the lateri§} Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency
ival We sh two different techniaues for valistati and Time in Models of ComputatioMorgan Kaufmann, 2001.

equa ence. vve snow q [11] Edmund Clarke, Orna Grumberg, and Doron Pel&tbdel Checking

using our framework. We model the entire framework in ~ The MIT Press, 2000.

PROMELA and formally verify using the SPIN model checkeff12] Gerard HolzmannThe SPIN Model CheckeAddison Wesley, 2004.
The lat ival . d f | edt 13] D. A. Mathaikutty, Hiren D. Patel, and Sandeep K. Shuldgunctional
€ latency equivalence Is expressed as a rormal propeaty an programming framework of heterogeneous model of compmutator

verified for equivalence. We also show the validation usimeg t system design. liforum of Design Languages (FDL 20048004.
functional programming based simulation technique whiege t[14] R. Milner, M. Tofte, R. Harper, and D. MacQueefThe Definition of
f K b deled in SML and simulated f tai Standard ML - RevisedMIT Press, 1997.
_ramewor can be moaeled In A and simulated tor cer aE]S] LIP Fermat website. http://fermat.ece.vt.edu/LtRh
input vectors. The latency equivalence can be modeled by
comparing the output of the two systems.
In contrasting the two techniques, we find formal verifi-
cation to be useful when we want to exhaustively check the

