
Validating Families of Latency Insensitive Protocols
Syed Suhaib, Deepak Mathaikutty, and Sandeep Shukla

FERMAT Lab
Virginia Tech

Blacksburg, VA-24060, USA
Email: {ssuhaib,damathai,shukla}@vt.edu

David Berner
INRIA-IRISA

Campus Universitaire de Beaulieu
35042 Rennes, France

Email: david.berner@irisa.fr

Abstract— With increasing clock frequencies, the signal delay
on some interconnects in an SoC often exceeds the clock period
which necessitateslatency insensitive protocols (LIPs). Correctness
of a system composed of synchronous blocks communicating via
LIPs is established by showinglatency equivalence between a
completely synchronous composition of the blocks, and the LIP
based composition. Every time a new LIP is conceived, they need
to be debugged and then proven correct. Mathematical theorems
to establish correctness, though elegant, are error prone,and
tedious to create for every new variant of LIPs. In this work,
we present validation frameworks for families of LIPs, both for
dynamic validation, useful for early debug cycles, and formal
verification for formal proof of correctness. We believe this is a
useful framework in the hands of designers trying to create new
LIPs or optimizing existing ones for design convergence.

I. I NTRODUCTION

In the current and upcoming System-on-a-Chip (SoC) de-
signs, intellectual property (IP) reuse is gaining increasing
importance. Reusing pre-existing modules such as memories,
processor cores, and dedicated hardware blocks chosen from
an IP (Intellectual Property) library seems to be the only way
to mitigate the problem of productivity crisis and shortening
time-to-market cycles. Therefore, a significant part of theSoC
design problem is in correct composition of these existing IP
blocks [1]. However, what makes this more problematic is
the fact that with the ever increasing clock frequencies, the
synchrony assumption between IP blocks stops being valid.
As the clock frequencies have crossed multi giga-hertz range,
the clock period is too small for two communicating blocks to
communicate signals across a long interconnect within such
small clock period. This is because some interconnects are
longer than the distance a signal propagates during a single
clock cycle [2]. This problem has recently came into focus
through a series of papers [2], [3], [4], [5], [6], [7], [8].

Although, a number of protocols, termed as Latency Insen-
sitive Protocols (LIP)s have been published in the literature,
no formal framework has been created to validate these
protocols. The reason why one needs a framework where
variants of these protocols can be quickly validated either
through simulation or through model checking is as follows.
These protocols are going through a continuing evolution
phase. For example, [6] attempts to optimize and improve
the protocols described in [2], [3], [4], [5] to obtain a more
efficient and simpler protocol circuitry. In [7], a new protocol
for pure Globally Asynchronous and Locally Synchronous

(GALS) systems based on the earlier LIPs has been proposed.
In [8], further simplification that obviates the use of specific
protocol circuitry has been proposed. Although [5] offers a
mathematical proof of correctness of their version of LIPs,
when optimizations or extensions are made in the subsequent
works, no such formal proof is usually offered. Due to the
subtleties involved in the optimizations, it is plausible that the
newly invented LIPs have serious flaws. We have experienced
this in our attempts to optimize Carloni’s protocol [3], [4]. As
a result, we felt that there is a need for a framework where
these protocols can be quickly modeled and validated either
dynamically or statically through formal verification. This is
the motivation for the current paper.

A. Solving the Long Interconnect Problem

Several approaches have been proposed to deal with the
problem of long latencies in global physical chip intercon-
nects in SoC design. One is a family of latency insensitive
protocols (LIP) as in [5], where all modules are encapsulated
with control logic blocks and possibly relay stations on the
interconnects to make these interconnect delays transparent to
the actual IPs. Another is to create packet based networks on
a chip (NoC)s, also targeted at interconnect latencies [9].

However, designing the composition of IPs necessitate a
refinement based design flow. In such a design flow, a syn-
chronous model [10] of the system can be built where all in-
terconnect latencies are assumed to be negligible. This follows
from the synchrony hypothesis used in clock-synchronous
hardware design, namely, communication latencies are neg-
ligible. From this synchronous model, necessary refinements
are made to the design to render the design latency insensitive
(LI). The correctness criteria is that the LI design belatency
equivalent to the synchronous design. Informally, latency
equivalence has to be first defined on signal pairs and then
to process/system pairs. Two signals are said to be latency
equivalent if the sequence of valid orinformativeevents on
the two signals are identical. In other words, if an observer
observes the order of events on two signals, then discounting
‘empty’ events, the two signals will look the same. Since
processes can be thought of as consumer and producer of
events on signals, the same notion can be extended to systems,
Two system models are latency equivalent if their outputs are
latency equivalent given both are subjected to the same (or
latency equivalent) input sequences. Latency equivalenceis

formally defined in the preliminary definitions Section IV.
There are many ways one can ensure correctness of LIPs,

and LI systems. Dynamic validation can be used to show
that a system using LI techniques is latency equivalent to the
completely synchronous model of the system which assumes
zero delay communication. Although dynamic validation is
appropriate for flushing out protocol design errors, such valida-
tion only covers for certain input sequences. Therefore, formal
verification is a more desirable validation mechanism. In order
to formally verify such protocols, the LI system as well as
the synchronous idealization have to be modeled formally,
and the latency equivalence has to be captured as a formal
property. However, our experience is that model checking is
very resource consuming [11]. Another way to confirm the
correctness of such an implementation is to mathematically
formalize it, as done in [5]. But mathematically proving
the equivalence of two systems is a challenging task and
not beyond mistakes. It requires complex mathematical proofs
that are not straightforward to follow by others who want to
confirm them, hence every new variation of LIPs cannot be
validated easily using mathematical proof techniques. Thebest
way is to provide designers with an easy to use framework to
model and validate their protocols.

In this work, we propose a framework for validation
of such systems. We target formal verification as well as
simulation based techniques to verify the LI systems in our
framework. For formal verification, we use the SPIN model
checker to verify the correctness of an LI system, whereas
for the simulation based technique, we use a functional
programming based technique to validate the LI system. We
contrast the two techniques and find that the SML based
simulation for validation is a more convenient way to validate
the framework, especially for debugging the early versionsof
the protocols.

Organization: This paper is organized as follows: In Sec-
tion II, we discuss some related work. In Section III, the LI
refinement methodology is illustrated followed by Section IV
where we introduce the preliminary definitions and notations
used in the paper. We also formalize the components of the
LI protocol in this section. In Section V, we describe our
framework along with its implementation in PROMELA and
SML followed by conclusion in Section VI.

B. Main Contributions

The main contributions of the papers are as follows:
• Development of a framework for validating families of

LIPs.
• Formal modeling and verification of a family of LIPs in

SPIN.
• Modeling and simulation based validation of LIPs using

a functional programming framework.

II. RELATED WORK

There are several approaches on how to create LI designs.
Carloni et al proposed a “correct-by-construction” method-
ology to design latency insensitive systems for single clock

SoCs [3]. In their approach, all modules are encapsulated in
a wrapper to form a “shell” that is latency equivalent to the
actual process, without having to modify the internals of the
original IP. This encapsulation is done by composing each
process with an equalizer1. Relay stations are added along
the long interconnections. They act like pipeline blocks to
store and forward data, and contain at least two registers and
control logic. Once the requirements of these relay stations are
determined based on the long interconnect in the initial place
and route, then placement and routing are done again with
the relay stations. Several iterations for placement and routing
may be needed in order to get a configuration that satisfies
all interconnection constraints. In this paper, we refer tothis
approach asrelay-station basedapproach.

In [8], we propose a different approach, which disposes
of the relay-stations by adding some interface logic and
wiring. While this approach requires more wires, it does not
increase the number of components that have to be placed, and
therefore uses less iterations for the placement and routing. We
call this thebridge-basedapproach. Instead of placing relay
stations along the long interconnects that connect two modules,
we place abridge process at the interface of the modules. A
bridge is a composition of two processes: asplitter at the
output of a “shell” and amerger at the input of the other
“shell”. Thesplitter andmergerprocesses are formally defined
in the preliminary definitions in Section IV.

All components of such LI designs are synchronous. The
LI systems presented are targeting SoCs with a single mas-
ter clock. Singh and Theobald generalize the LI theory for
Globally Asynchronous and Locally Synchronous (GALS)
systems [7]. In their approach all input and output signals are
controlled by complex FSMs implemented in the wrapper. The
communication network is implemented as an asynchronous
system to connect modules with different clocks. Overall
this approach is associated with heavy penalties in terms of
implementation costs and performance.

Casu and Macchiarulo show how to reduce chip area com-
pared to Carloni’s approach [6]. They use a smart scheduling
algorithm for the functional block activation and substitute
relay stations with simple flip-flops. One disadvantage of this
approach is that the schedule has to be computed a priori and
depends on the computation in the process. If any change is
made in any process, it may result in the change of the flow
of tokens and may result in inconsistency with the current
scheduling algorithm. In this case, the schedule has to be
recalculated, which is expensive. We propose a validation
framework for such LI protocols where they can be easily
checked for correctness. We use two different techniques for
validation: Formal verification using SPIN and SML based
validation. This framework helps in validating such protocols
that are continuously changing and evolving.

III. D ESIGN FLOW TO LI REFINEMENT

In this section, we describe a transformation procedure to
refine a synchronous system to an LI system shown in Figure 1

1The functionality of the equalizer is defined in the preliminary section

as a flow diagram.

Fig. 1. Refinement steps to LI implementation

The steps to LIP refinement are as follows:
1. We start with a collection of synchronously communicat-

ing components. These components can be custom-made
modules or IP cores.

2. Floor planning and interconnection routing are done to
check for long interconnects. If all communication can
be done in a single clock cycle, then there is no need
for LIP refinement.

3. If long interconnects are present then all modules are
encapsulated with a block of control logic. This encapsu-
lation includes logic that controls the flow of the events,
buffers, control stations, repeater stations etc to enable
correct transmission of data.

4. Estimation using floor planning and interconnect routing
is done again, this time with the encapsulated processes
to relocate and evaluate the delays on the long intercon-
nects.

5. After finding the delays on the long interconnects, the
designer can then segment those long interconnects
with additional processes containing buffers, latches,
forwarding stations, etc to ensure that data is properly
communicated through the long interconnects. Depend-
ing on the delay of the interconnect, the events can be
compared from the point they are placed on the signal
to the point they leave the signal.

6. Floor planning and interconnect routing is done again to
ensure that no long interconnects exist in the system.

Once these synchronous components are composed together
to form a latency insensitive system, our next goal is to check
if the new LI system is functionally correct. Before we talk
about the framework for validation for LI systems, we will
first look at the background of the two validation techniques
we use and present some preliminary definitions.

IV. BACKGROUND AND PRELIMINARY DEFINITIONS

In this section, we give the background for the SPIN model
checker, functional programming as well as definitions we use
throughout the paper.

A. SPIN background

SPIN [12] is a model checker used extensively for formal
verification of systems. SPIN is used to trace logical design
errors and to check the consistency of specifications. Like most
model checkers, SPIN also verifies a system for all exhaustive
paths. Its basic building blocks include asynchronous pro-
cesses, message channels, synchronizing statements, and struc-
tured data. We use these basic blocks to write synchronous
models. The communication is done through shared global
variables. Since the processes run asynchronously in SPIN,we
synchronize the execution of all processes in order to make
our model behave synchronously. We illustrate and explain in
detail the model of the clock controller at a later stage in the
paper.

B. Functional Programming

In [13], we have presented a functional programming based
framework for system modeling created on top of the Standard
ML (SML) [14] language. Functional languages such as
SML provide a clean and simple semantic model, which
performs all computation by function application, thereby
providing a more abstract notation to express computation.In
our dynamic validation framework, we model the idealized
synchronous model as well as its LI version and compare
both the models by feeding input streams to both modules
together and comparing their outputs for latency equivalence.
The reason this framework is used will become obvious as
we provide the definitions of various components of the LIPs
in the subsequent sections. All the definitions can be readily
recognized as recursive function definitions which can be
directly mapped to SML.

C. Preliminary Definitions

In this section, we show some of the definitions we use in
the rest of the paper. LetV be the set of data values and,T

be a countable set of time stamps. Unless otherwise specified,
in this paper, we assumeT = N = set of natural numbers.
An evente ∈ V × T is an occurrence of a data value with a
particular time stamp. However, in the systems we consider,
a special event calledabsent eventdenoted byτ may occur2.
Therefore, the set of all events is denoted byE, whereτ ∈
E and for all othere ∈ E, e ∈ V × T . Whene ∈ V × T

it is called aninformative event. A signal s is defined to be a
sequence of events, often denoted ase1e2e3 . . . whereei ∈ E.

For the preliminary definitions, ifs is a signal,s[i] denotes
the ith event, hence eithers[i] ∈ V × T or s[i] = τ . The set
of all signals is denoted byS. The signals can be either input
signals or output signals of a process. We also distinguish
Stall signalsfrom all signals in the system. A stall signalst

2It may be caused due to lack of valid data in the producer or dueto the
consumer’s request to delay a transmission

is a sequence of boolean events, i.e.,st[i] ∈ Bool × T . The
set of all stall signals is denoted byST . In our system, IPs
are hardware modules that map input signals to output signals,
therefore in this paper we refer to them as processes. A process
p is a functionSn −→ Sm wheren, m ∈ N. A synchronous
system consists of these processes where communication and
computation happens at the global clock. The communication
among these processes is assumed to be zero-delay and each
process takes one cycle for computation.

In the remainder of this section, we define a few terms and
notations that are used throughout the paper.

Definition 1: Given s ∈ S and e ∈ E, we definee ⊕ s = s′

wheres′ = e :: s, s.t. e is the first element ands is the rest of the
signal.

Definition 2: Given one tuple ofm elements and another ofn
elements,

J

creates a tuple ofm + n elements.
< a1, . . . , an >

J

< b1, . . . , bm > = < a1, . . . , an, b1, . . . , bm >
Definition 3: Given two tuples ofn events andn signals respec-

tively,
L

creates a tuple ofn signals with an event appended to each
signal.
< e1, . . . , en >

L

< s1, . . . , sn > = < e1 ⊕ s1, . . . , en ⊕ sn >
Definition 4: Latency Equivalence

The two signalss1 and s2 are said to be latency equivalent,s1 ≡e

s2 ⇔ F(s1) = F(s2), where
F : S → S be defined as,F(s) = σ(s, 1, n) and,

σ(s, i, n) =

8

<

:

σ(s, i + 1, n), if s[i] = τ
s[i], if (i = n)
s[i] ⊕ σ(s, i + 1, n), otherwise

F takes a signals as input and outputs a signals′ that contains
no τ events, but preserves all informative events. The helper
function σ takes the signals, n which is the length of the
signal s and the initial index 1 as parameters.σ is defined
recursively with the following cases: If the event at current
index isτ , thenσ is called with the index incremented. If the
event is notτ and the index reaches the length of the signal,
then σ terminates by returning the last event, otherwise the
informative event at theith position is returned withσ called
to check for the next event.

Definition 5: Sequential composition
Given two processesp1: Su

→ Sv, p2: Sv
→ Sw ands1, · · · , su ∈

S, we define the sequential operator◦ as:
p2 ◦ p1(s1, · · · , su) = p2(p1(s1, · · · , su))

Definition 6: Feedback composition[10]
Given a processp: (S×S) → (S×S) andsi, sj , sk ∈ S, we define
the feedback operatorFBp(p) as:

FBp(p)(si) = sk wherep(si, sj) = (sj , sk)

The signalsj is an internally generated signal and the behavior
of the feedback process is defined using fixed point seman-
tics [10]. For simplicity, we define the feedback composition
for a specific process with two input and output signals, though
it can be easily generalized for processes with multiple inputs
and outputs.

Definition 7: A vectorization functionΥn
i=1(exp(i)) is defined

that evaluates the expressionexp(i) for i from 1 to n.
Υn

i=1(exp(i)) = < exp(1), exp(2), · · · , exp(n) >
where,exp(k) is a textual replacement ofi by k in exp(i).

In this work, we are targeting thebridge-basedapproach,
where all synchronous modules are encapsulated with an
equalizer. An equalizer (E) is a process that givenn input

signals and a stall signal, it producesn output signals andn
stall signals. The functionality of the equalizer can be divided
into three modes:

1. Disable mode: In this mode, the equalizer is stalled by
the another process through an input stall signal. The
equalizer sends absent events on all its output signals
and enables all the output stall signals using function
InsertStl(shown in Definition 8).

2. Absent mode: In this mode, the equalizer receives an
absent event on one of its input signals and its input
stall is disabled. The equalizer sends absent events on all
its output signals and stalls only those processes from
which it received an informative event using function
InsertAbt(shown in Definition 8).

3. Present mode: The equalizer receives informative events
on all its input signals and its input stall is disabled.
It places these informative events on the output signals
using functionInsertEvt(shown in Definition 8).

Definition 8: Equalizer
Givens1, . . . , sn ∈ S andst ∈ ST , the equalizerE : (Sn

×ST) −→
(Sn

× ST
n) is defined as:
E(s1, . . . , sn, st) = eval(s1, . . . , sn, st, 1, · · · , 1)

where,
eval(s1, . . . , sn, st1 :: st2, i1, i2, . . . , in) =

if (st1 = false) then
if (∃n

j=1 (sj [ij]) = τ) thenInsertAbt
L

evalnextindex
elseInsertEvt

L

evalnextevent
elseInsertStl

L

evalnextstall

InsertAbt = < τ, τ, . . . , τ >
J

Υn
j=1(exp1(j))

InsertEvt = Υn
j=1(sj [ij])

J

< false, . . . , false >
InsertStl = < τ, τ, . . . , τ >

J

< true, . . . , true >

evalnextindex = eval(s1, · · · , sn, st, Υ
n
j=1(exp2(j)))

evalnextevent = eval(s1, · · · , sn, st, Υ
n
j=1(ij + 1))

evalnextstall = eval(s1, · · · , sn, st, Υ
n
j=1(exp2(j)))

exp1(j) : if (sj [ij]) = τ thenfalse elsetrue

exp2(j) : if (sj [ij]) = τ then ij + 1 elseij

The equalizer is defined using a helper functioneval that takes
n signals, a stall signal and initial indices for each input signal
and returnsn signals andn stall signals. The initial indices
are given assuming that the first event for each signal is at that
position.

In thebridge-basedapproach,splitter andmergerprocesses
are placed for communication of data through the long inter-
connects. We compose these two processes to form abridge
process as shown in Figure 2. Thebridge not only ensures
correct flow of events from one process to another, but also
ensures that the delay in between the events is minimized.
Each bridge process has one input signal and one output
signal.

The splitter and themerger process are connected byn
interconnects wheren is the delay on the long interconnect.
Hence, thesplitter process hasn output signals. This process
contains simple placement logic for the placement of events
on thesen signals. The splitter is implemented at the output of
a process, and it places events on the corresponding signals.

Fig. 2. Bridge

The splitter only places one input event on one of the output
interconnects and absent events are placed on the rest of the
signals at a particular time stamp. Assuming that there arei

events on the input signal of the splitter, at every cycle, the ith

event is placed on thenth signal based on a rotational scheme.
For example, if the delay on the interconnect is 3 cycles, then
in the current cycle, the first element will be placed on the
first signal and absent events will be placed on the other two
signals. In the next cycle, the second event will be placed
on the second signal and absent events will be placed on the
first and third signals and for the third event it will follow
the scheme. After the third event is placed, in the following
cycle, the fourth event will be placed on the first signal again.
This rotation scheme will continue for the rest of the events.
This functionality is illustrated by the formal definition shown
below:

Definition 9: Splitter
Given s ∈ S, the SplitterH : S → Sn is defined as:

H(s) = spread(s,n, 1)
where,

spread(x :: y, n, i) =

8

>

<

>

:

place(x,n, i, 1)
L

spread(y,n, 1),
if i = n

place(x,n, i, 1)
L

spread(y,n, i + 1),
otherwise

insertAbt(n) =

τ, if n = 1
τ

J

insertAbt(n − 1), otherwise

place(x,n, i, j) =

x
J

insertAbt(n − j), if i = 1
τ

J

place(x,n, i − 1, j + 1), otherwise

The splitter is defined using a helper functionspread(s,n,1)
that takes three parameters which are the signals, delay on
the interconnectn and initial index of the signals. spread
uses theplace function to send an event on the appropriate
output signal. The functionplaceputs τ on all signals using
insertAbtexcept for theith signal on which it places theith

event of the input signal.
Contrary to the splitter, we implement amerger that

takes n input signals and outputs one signal. The merger
also extracts one event from the input signals based on the
rotational scheme as illustrated earlier and places it on the
output signal. The functionality of themerger is formally
defined below:

Definition 10: Merger
Given s1, · · · , sn ∈ S, the mergerM : Sn

→ S is defined as:
M(s1, . . . , sn) = ext((s1, . . . , sn), n, 1)

where,

rem(x :: y, n, i) =

x, if i = n
rem(y, n, i + 1), otherwise

ext((x1 :: y1, . . . , xn :: yn), n, i) =

rem((x1, .., xn), n, i) ⊕ ext((y1, .., yn), n, 1), i = n
rem((x1, .., xn), n, i) ⊕ ext((y1, .., yn), n, i + 1), otherwise

The merger is defined using the helper functionext that
takes as parameters the signalss1, . . . , sn, delay of the signal
n and the index of the first signal.ext extracts the informative
event from the appropriate signal and places it on the output
signal using therem function. rem returns the event at theith

position.

V. FRAMEWORK FOR VALIDATION

It is essential to validate the functionality of the LI system
that is formed by composing the components of the LIP with
the synchronous system. We propose an easy to use framework
for validating such LI systems. In this framework, we model
the LI system along with its synchronous idealization and
provide the same input signals to both the systems. These
input signals can also be latency equivalent. We then model
an Eqcomparator process which is a reduced version of the
Equalizer process. Similar to the equalizer, theEqcomparator

process reads the informative events from the output signals of
the two systems. The informative events on these signals are
compared and checked to be latency equivalent. In the case
when an absent event is seen on one of the output signals,
it is discarded and the next event is considered on the same
signal. The informative events on the two output signals are
compared in sequence to ensure correct functionality.

Using this framework, we can take any system and its LI
implementation and validate it for correct functionality by
latency equivalence checking. This framework can be used
for any proposed LI protocol to ensure the correctness for
the system. For example, Casu and Macchiarulo’s proposed
approach for optimizing and using a scheduling algorithm to
control the flow of tokens can be easily checked for correctness
as the scheduling may change depending on the change of
functionality of the system.

We have validated various examples of LI systems using
our framework with two different approaches. We model a
synchronous system and its LI implementation in PROMELA.
Then we formally verify it by placing an assertion in the
Eqcomparator process. The assertion property states that
the informative events from both systems are equal provided
they are given the same input sequence. We show how we
implement the component required for refinement to LI system
in the following section. We also present another simulation
based validation approach using this validation setup in the
SML framework.

A. SPIN based description

In SPIN, the communication among the processes is imple-
mented through global shared variables. A process may write
to a variable and another may read from the same variable.
Since, the SPIN model checker targets mainly asynchronous
systems, and to model a synchronous system, we introduce a

clock controller process that controls the reading and writing
of these variables for every clock. Hence, we divide the
working of the processes into two phases, the read phase
and the write phase. In the read phase, the processes read
the values from its shared variables and in the write phase,
new values are written on those variables. It is assumed that
the communication is done in zero-time and all processes
work concurrently as modeled. Temporary variables such as
donei are used to denote the reading phase (when 0) or
writing phase (when 1) of processPi. Unless all the process
complete reading or writing, depending on the phase, the clock
controller will not change the phase.

In PROMELA, an equalizer process and its composition
with its original process is modeled. The PROMELA code
for the equalizer is shown in Listing 1. In the implementation
shown, we assume that it is composed with a process with two
inputs signals. The SPIN model of the equalizer consists of
two temporary buffers for each signal to store the values on the
incoming signals. We also declare variablevalidi which keeps
the track of the number of informative events in the buffer
for signali. In every clock cycle the equalizer reads a value
during the read phase and store the value in the temporary
variable. As the value is stored, thevalidi is incremented for
that signal. In the write phase of the same clock cycle, the
value is written on the output provided the buffer count (i.e
validi) is greater than 1 for all signals. Otherwise an absent
event is placed on all output signals. The logic for the output
stall signals of the process are based on number of informative
events on the buffer (Functionality of the equalizer is presented
in Section IV-C).

Listing 1: PROMELA code for Equalizer

{Comment: The code for the equalizer is presented below.eventtypeA==1
means that event onsignalA is informative. There are two temporary
buffers for each signal.temp1A is the first temporary buffer for signal
A and temp2A is the second temporary buffer for signal A. The variable
stall == 1 denotes that the equalizer is stalled.}

proctype Equalizer(){
int valid1 , valid2 ;

loop:
Synchronize reading with other processes.

/* START OF READ PHASE */
if
� (eventtypeA && valid1 == 0) → valid1++;

Store value intemp1A

� (eventtypeA && valid1 == 1) → valid1++;
Store value intemp2A

� (!eventtypeA && valid1 == 1) → temp1A = temp2A

� else → skip
fi;

/* Signal B can be written in a similar way */
Synchronize writing with other processes.

/* START OF WRITE PHASE */
if snipsTATE � (valid1 > 0 && valid2 > 0 && ! stall) →

valid1–; valid2–;
Place events on output signals

� else→ Place absent events on output signals ;
fi;
Set output stall signals based onvalidi values

goto loop;}

The PROMELA code of the splitter process is shown in
Listing 2. We assume that there is a two clock cycle delay
on the interconnect where the splitter is placed. A temporary
variable place is defined that places the events from the
input signals to eithersignal0 or signal1, depending on the
current value of theplace. These two signals connect the
splitter and the merger. Theplace variable keeps changing
every clock cycle.

Listing 2: PROMELA code for Splitter

{Comment: The code for the splitter is presented below. The splitter
is placed at the output of synchronous module connecting to the long
interconnect. For this implementation we assume that the interconnect delay
is two cycles. The synchronization is done when the module outputs. The
placement variable calledplace is defined s.t whenplace == 0 then the
event is placed onsignal0, otherwise it is placed onsignal1 }

proctype Splitter() {
int place=0;

loop:
Synchronize with process.
if
� place == 0 → place=1;

Place event onsignal0
Place absent event onsignal1

� place == 1 → place=0;
Place event onsignal1
Place absent event onsignal0

fi;
goto loop;}

The PROMELA code of the merger process is shown in
Listing 3. In this implementation, similar logic is used to read
the values from the two incoming signals. Theplace variable
is offset in this module based on the delay on the interconnect.
The values read from the signals are then placed on the output.

Listing 3: PROMELA code for Splitter

{Comment: The code for the merger is presented below. The merger is
placed at the input of synchronous module on the long interconnect. The
synchronization is done when the module reads. Theextract variable is
defined s.t whenextract == 0 then the event is taken fromsignal0,
otherwise it is taken fromsignal1 }

proctype Merger(){
int extract=0;

loop:
Synchronize with process.
if
� extract == 0 → extract=1;

Extract event fromsignal0
� extract == 1 → extract=0;

Extract event fromsignal1
fi;

goto loop;}

We formally verify the assertion for latency equivalence
using the SPIN model checker for an example with two
processes as shown in Figure 3. The example is of a simple

parity checker that checks if the input is a 1 or 0. The output
of the system is based on the previous input’s value.

Fig. 3. LI system with Bridge

An alternative to using formal verification, we use a simula-
tion based technique to valide the LI systems in our proposed
framework. We model this framework in SML and simulate
for various test vectors.

B. SML based LIP description

In this section, we describe the components of the LI
framework and its implementation in SML. A finite signal is
modeled as generic list, whereas an infinite signal is written
as delayed function application. In SML, for our convenience
we formulate an event to be a list of two elements, where the
first element is the value and the second element identifies
whether the event is an informative event or an absent event
(eg. ej = [3,1] is thejth event with 3 as the value and 1 as
the identity of the event3). Hence, a signal can be formulated
as a list of events. (eg:si = [[1,1],[2,1],[3,0],. . .]).

Following the earlier mentioned refinement methodology,
we first encapsulate the synchronous components with an
equalizer. The SML code of the equalizer is given in Listing 4.
The equalizer reads one event from all the input signals of
a process along with an event from the stall input. It then
checks if all the events at a time are informative. The check
for events is done through theetypes andinfo functions. The
functionality setting the stall values forDisable modeis done
by the stallon function and the output is given bye3. The
stall values when the equalizer is inabsent event modeis set
by stallset function and the output is given bye2. Finally,
the valid modeoutput is given bye1. The equalizer process
is then sequentially composed with the synchronous process
to form the shell of the process.

Listing 4: SML code for Equalizer

fun equalizer() = fn s => fn st =>
f (s, st, indexstart(length(s))

fun f([],st1::st,) = [] | f(,[],) = [] | f(, ,[]) = [] |
f(s,st1::st,i) =

let
fun etype(x1::x2) = x2| etype([]) = nil
fun etypes[] = [] |

etypes(x1::x) = etype(x1) @ etypes(x)
fun info [] = false |

31 corresponds to an informative event and 0 corresponds to anabsent event

info(x1::[]) = if (x1=1) then true else false |
info(x1::x) = if (x1=1) then info(x) else false

val allevents = e(s,i)/*Events from all signals*/
val allinfo = if info(etypes(allevents)) = true

then true else false
/*True when all events are informative*/

fun stalloff(0) = [] | stalloff(n) = [1] @ stalloff(n-1)
fun stallon(0) = [] | stallon(n) = [0] @ stallon(n-1)
fun flipval(x) = if x=1 then 0 else 1
fun stallset([]) =[] |

stallset(x1::x) = [flipval(x1)] @ stallset(x)
val e1 = [allevents,[stalloff(length(allevents))]]
val e2 = [tauevents(length(s)),[stallset(tags(allevents))]]
val e3 = [tauevents(length(s)),[stallon(length(allevents))]]

in
(case(st1) of

1 => (if allinfo = true
then ([e1] @ f(s,st,incindex(i)))
else ([e2] @ f(s,st,incempty(i,etypes(allevents)))))|

0 => ([e3] @ f(s,st,i)) —
=> [])

end

The next stage of the refinement methodology involves
refining the long interconnects by inserting the bridge process.
The delay on the bridge is modeled by theDelayproc process
that just delays the events byn cycles, wheren is the
delay on the interconnect. The SML implementation of the
splitter process is shown in Listing 5. An input signal and the
interconnect delay is given to thesplitter process. One event
is read from the input signal andinsertevent function places
the event from the input signal to one of the interconnects
and absent events are placed on rest of the interconnects. The
events are placed in the rotational scheme as illustrated earlier.

Listing 5: SML code for Splitter

fun splitter(n) =fn s => f(s,1,n)
fun f([], ,) = [] | f(x1::x, i, n) =
let

fun insertevent(,j,0) = [] |
insertevent(y1,j,n) = (if n = j
then [y1] @ insertevent(y1,j,n-1)
else [[0,0]] @ insertevent(y1,j,n-1))

in
if (i = n)

then [insertevent(x1, i, n)] @ f(x, 1, n)
else [insertevent(x1, i, n)] @ f(x, i+1, n)

end

The SML representation of the merger is shown in Listing 6.
Theextractevent function extracts one event from all signals
at a time. Extraction of events from the signals is done in
similar way as they are placed on the interconnects by the
splitter.

Listing 6: SML code for Merger

fun merger(n) =fn s => g(s,n,1)
fun g([], n, i) = [] | g(x1::x, n, i) =
let

fun extractevent([],n) = []| extractevent(x1::x,n) =
(case (n) of

1 => x1 |
=> extractevent(x, n-1))

in
if (i = n)

then [extractevent(x1,i)] @ g(x, n, 1)
else [extractevent(x1,i)] @ g(x, n, i+1)

end

We compose all the components of the system after the
refinement. The input sequence of the splitter and the output
sequence of the merger are equivalent, since the order of events
written by the splitter on then output signals and the order of
events read by the merger from itsn input signals is the same.
Therefore, the flow of events from the output of one shell
across the long interconnect to the input of the corresponding
shell is maintained. As the stall signals are dependent on the
events received in the previous cycle from the processes to
which these stall signals are connecting, they operate on a
feedback semantics. We use the fixed point operator defined
in the preliminary section to implement the feedback.

For this SML framework, we consider a larger case study
of an adaptive modulator that consists of three IPs: regulator,
convolutor and analyzer. The regulator module takes an input
signal and a control signal and outputs based on the control
signal by adding a threshold value. This output is then mul-
tiplied with a masking value by the convolutor module. The
output of the system is given by the amplitude signal. The
analyzer module outputs the control signal based on the input
of the amplitude. Due to lack of space, we only show some
code snippets in this paper. However, complete code listing
can be downloaded from [15].

In order to check the correctness of the LI system, we setup
the two systems as described by our validation framework. We
feed the same input sequence to both models and validate for
the latency equivalence of their outputs. We have implemented
this LI system for a finite signal input as well as for an infinite
signal input. For finite signals, we can see the output of the
Eqcomparator process for as many input events given. In the
case of infinite signals, we can check for the desired number
of input values as computation for infinite values is based on
delayed function application.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework for validation of LI
systems. The LI systems along with their synchronous ideal-
ization can be modeled together and checked for the latency
equivalence. We show two different techniques for validation
using our framework. We model the entire framework in
PROMELA and formally verify using the SPIN model checker.
The latency equivalence is expressed as a formal property and
verified for equivalence. We also show the validation using the
functional programming based simulation technique where the
framework can be modeled in SML and simulated for certain
input vectors. The latency equivalence can be modeled by
comparing the output of the two systems.

In contrasting the two techniques, we find formal verifi-
cation to be useful when we want to exhaustively check the

system for correctness for all possible paths. This approach
may be time consuming but would ensure complete validation
of the system. On the other hand, the SML based simula-
tion had its own set of advantages. We found SML based
simulation validation to be an easier way to find the bugs
in the protocol at an earlier phase of the design process
by simulating the framework with a set of test vectors and
checking for the correctness of the system. Also, due to the
inherent denotational semantics of functional languages,we
found it easier to formalize such a framework. We realized
that the formal definitions of the components of LIP could
be naturally mapped to SML. Hence, it was easy to model
the framework in SML. Also, the component of the LIP were
made generic such that they could easily be reusable with
any component. It also helped in making the models open to
extension without making many changes.

We also experimented with multiclock LI systems using our
framework, but due to lack of space we do not show the details
in this paper. A possible extension would be to modify the
LI protocols to GALS system such that they could be easily
validated in the framework.

REFERENCES

[1] M. T. Bohr. Interconnect scaling - the real limiter to high performance
ulsi. IEEE Int. Electron Devices Meeting, pages 241–244, 1995.

[2] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Copingwith latency in
SoC design.IEEE Micro, Special Issue on Systems on Chip, 22(5):12,
October 2002.

[3] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli.
A methodology for correct-by-construction latency insensitive design. In
In Proc. International Conf. Computer Aided Verification, pages 309–
315, November 1999.

[4] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Latency insensitive protocols. In11th International Conference on
Computer-Aided Verification, volume 1633, pages 123–133, Trento,
Italy, 07 1999. Springer Verlag.

[5] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The Theory
of Latency Insensitive Design.IEEE Transactions on Computer Aided
Design of Integrated Circuits and System, 20(9):1059–1076, 2001.

[6] M. Casu and L. Macchiarulo. A new approach to latency insensitive
design. InDesign Automation Conference, 2004.

[7] M. Singh and M. Theobald. Generalized latency-insensitive systems for
single-clock and multi-clock architectures. InDesign, Automation and
Test in Europe (DATE’04), 2004.

[8] Syed Suhaib, David Berner, Deepak Mathaikutty, Jean-Pierre Talpin,
and Sandeep Shukla. Presentation and formal verification ofa family
of protocols for latency insensitive design. Technical Report 2005-02,
Virginia Tech, 2005.

[9] Luca Benini and Giovanni De Micheli. Networks on chip: A new
paradigm for systems on chip design. InDesign Automation and Test
in Europe, 2002.

[10] Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency
and Time in Models of Computation. Morgan Kaufmann, 2001.

[11] Edmund Clarke, Orna Grumberg, and Doron Peled.Model Checking.
The MIT Press, 2000.

[12] Gerard Holzmann.The SPIN Model Checker. Addison Wesley, 2004.
[13] D. A. Mathaikutty, Hiren D. Patel, and Sandeep K. Shukla. A functional

programming framework of heterogeneous model of computation for
system design. InForum of Design Languages (FDL 2004), 2004.

[14] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of
Standard ML - Revised. MIT Press, 1997.

[15] LIP Fermat website. http://fermat.ece.vt.edu/LIP.html.

