
No d’ordre: 3273

THÈSE

Présentée devant devant l’ Université de Rennes 1 pour obtenir

le grade de : Docteur de l’Université de Rennes 1
Mention Informatique

par

David BERNER

Équipe d’accueil : ESPRESSO
École Doctorale : Matisse

Composante universitaire : IFSIC / IRISA

Titre de la thèse :

Utilisation de méthodes formelles dans la

conception conjointe de systèmes embarqués

Using Formal Methods for the CoDesign

of Embedded Systems

soutenue le 06 mars 2006 devant la commission d’examen

Patrice Quinton Président
Florence Maraninchi Rapporteur
Sandeep Shukla Rapporteur
Robert de Simone Examinateur
Paul Le Guernic Examinateur
Jean-Pierre Talpin Directeur de thèse

Why waste time learning, when ignorance is instantaneous?
Calvin & Hobbes

Contents

First Part – French Abstract 7

Introduction 9

Contributions principales . 11

1 Flot de conception conjointe 13

1.1 L’approche modulaire . 14

1.2 Réutiliser c’est accélérer . 16

2 Pourquoi utiliser des méthodes formelles dans la conception con-
jointe? 19

2.1 Assurer que la spécification soit complète 19

2.2 Réduire le nombre d’erreurs dans la spécification 20

2.3 Réduire le nombre d’erreurs dans l’implémentation 20

2.4 Accélérer le développement, réduire les coûts 20

2.5 Améliorer la fiabilité du système 21

2.6 Prouver le respect de standards 21

3 L’intégration de méthodes formelles dans la conception con-
jointe 23

3.1 Transformation automatisée vers un langage formel 23

3.2 La modélisation formelle itérative 24

3.3 Validation de protocoles insensibles aux latences 25

4 Mise en oeuvre 27

4.1 Transformation de composants SystemC en SIGNAL 27

4.2 Extraction d’informations structurelles de modèles SystemC . . . 29

4.3 Modélisation formelle itérative 30

Conclusion 33

1

2 Contents

Second Part – English Abstract 37

Introduction 39
Main Contributions . 42

5 Embedded System CoDesign Flow 43
5.1 The Basic Design Flow . 43

5.1.1 Specification . 43
5.1.2 Implementation . 45
5.1.3 Synthesis . 46

5.2 The Modular Approach . 47
5.3 To Reuse Means to Accelerate 49

6 Why use Formal Methods for CoDesign? 53
6.1 Assure Completeness of Specification 54
6.2 Reduce Specification Errors . 54
6.3 Reduce Errors in Implementation 55
6.4 Speed up Development, Reduce Costs 55
6.5 Improve System Reliability . 55
6.6 Prove the Adherence to Standards 56

7 Integration of Formal Methods into the CoDesign Flow 57
7.1 Automated Transformation into a Formal Language 57
7.2 Extreme Formal Modeling . 58
7.3 Validation of Latency Insensitive Protocols 59

Third Part – Formal Foundations 61

8 Polychrony and SIGNAL 63
8.1 An Algebraic Notation . 64

8.1.1 Formal Syntax . 66
8.1.2 Notational Conventions 67

8.2 A Polychronous Model of Computation 68
8.2.1 Scheduling Structure of Polychrony 69
8.2.2 Synchronous Structure of Polychrony 69
8.2.3 Denotational Semantics of the iSTS Algebra 70

8.3 The SIGNAL Language . 72
8.3.1 Relating Polychronous Signals with Clocks 73
8.3.2 Code Generation via Hierarchization 74
8.3.3 Some More Concrete Syntax 75

8.4 Translating iSTS into SIGNAL 77

Contents 3

9 Behavioral Types for SystemC 79
9.1 Example and Overview . 80

9.1.1 Static Single Assignment 80
9.1.2 Propositional Behavior 81
9.1.3 Static Abstraction . 83
9.1.4 Typed Modules . 83
9.1.5 Proof Obligations . 85

9.2 Formal Syntax of the SystemC Core 85
9.3 Inference . 88

9.3.1 Completion of the State Logic 91
9.3.2 Modular Extension to External Method Calls 91
9.3.3 Static Interface of SystemC Modules 92

9.4 A Behavioral Module System . 93
9.4.1 Type Inference for Declarations 94
9.4.2 Type Inference for Modules 94
9.4.3 Proof Obligation Synthesis 95

9.5 Behavioral Types in Polychrony 96

10 Applications 99
10.1 Scalability . 99
10.2 Modularity . 100
10.3 Design Checking . 101
10.4 Design Exploration . 102
10.5 Systematic Formalization of Specification-Level Behavior 103
10.6 Conformance Checking . 104

Fourth Part – Using Formal Methods for Embedded
Systems 105

11 Introduction 107
11.1 Translating SystemC Behavior using SSA 109
11.2 SytemCXML . 110
11.3 Contributions . 111
11.4 Related Work . 111

11.4.1 Ptolemy . 112
11.4.2 POLIS, Metropolis . 112
11.4.3 Existing Tools for Structural Reflection 113
11.4.4 ESys.NET Framework 114
11.4.5 BALBOA Framework . 114
11.4.6 Pinapa and LusSy . 114

4 Contents

11.4.7 Java, C# .NET Framework, C++ RTTI 115
11.4.8 Doxygen, XML, Apache’s Xerces-C++ 115

12 Modular Verification of SystemC Components 117
12.1 Methodology and Tools . 118

12.1.1 Static Single Assignment Form and GIMPLE 118
12.1.2 Formal Verification of Component Properties 119

12.2 Case Study of an FIR Filter . 120
12.2.1 The SystemC Model . 120
12.2.2 Obtaining a GIMPLE-SSA Representation 121
12.2.3 Extracting Clock and Scheduling Information 122
12.2.4 The Equivalent SIGNAL Program 124
12.2.5 Making a Boolean Model 127
12.2.6 Using the Model Checker 127
12.2.7 Abstraction of the SIGNAL Model 128

12.3 Summary . 129

13 Automated Extraction of Structural Information from SystemC-
based IP 131
13.1 Extracting Structural Information 132
13.2 Applications for Validation . 137

13.2.1 Visualization . 137
13.2.1.1 The DOT format. 138
13.2.1.2 Graph generation. 138

13.2.2 Design Management . 140
13.2.3 Automated Test Generation 141

13.3 Current Work . 144
13.4 Summary . 144

14 Incrementally Building Formal Models 147
14.1 Introduction . 147
14.2 Contributions . 149
14.3 Incremental Model Building and Polychrony 150

14.3.1 Nondeterminism . 151
14.3.2 Verification Logic . 151
14.3.3 Compositionality . 152

14.4 Methodology . 152
14.4.1 Tools . 153
14.4.2 Extreme Programming 154

14.5 Example . 154
14.5.1 Traffic light model. 155

Contents 5

14.5.2 Model of a DLX Pipeline Control 156
14.6 Subsequent Work . 160

14.6.1 Property Ordering . 161
14.6.2 GUI Toolkit . 162

14.7 Summary . 162

15 Validating Latency Insensitive Protocols 165
15.1 Introduction . 165

15.1.1 Related Work . 166
15.1.2 Spin . 168

15.2 Contributions . 168
15.3 Methodology . 168

15.3.1 Carloni’s Latency Insensitive Protocol 168
15.3.2 Eliminating Relay Stations 170
15.3.3 Components with Different Clocks 172
15.3.4 Verification of LI Protocols 173

15.4 Subsequent Work . 174
15.5 Summary . 175

Conclusion 177
Future Work . 179

References 182

List of Figures 195

6 Contents

First Part

French Abstract

7

Introduction

L’étude de l’évolution des méthodes industrielles de haute technologie fait ressor-
tir deux tendances majeures. L’une se traduit, du fait d’une mondialisation
croissante, par l’abandon de la conception d’un produit en un lieu unique. Au-
jourd’hui, de nombreuses équipes dispersées dans des laboratoires et des pays
différents travaillent ensemble pour la réalisation d’un seul produit. L’exemple
le plus représentatif de ce phénomène est la construction de l’airbus A380 qui a
fait coopérer un grand nombre de scientifiques. L’autre se traduit par une minia-
turisation des transistors en silicium qui permet d’assembler des centaines de
millions de transistors sur une seule puce - 267 millions par exemple pour le pro-
cesseur Power5 de IBM en 2004. La Semiconductor Industry Association (SIA)
prédit qu’en 2020 le nombre de transistors sur une seule puce de haute perfor-
mance dépassera les 22 milliards (Figure 1). La taille, et donc la complexité des
systèmes, est en croissance exponentielle [Nai02], pourtant la concurrence et les
habitudes de consommation exigent que les temps de mise à la vente décroissent.
Des projets nécessitant 24 mois de travail en 1994 doivent en 2004 être accomplis
en 12 mois seulement [LW98, SR98].

En observant ces évolutions on peut se demander comment les entreprises vont
pouvoir répondre à ces défis. Comment des équipes de plus en plus distribuées
vont trouver la capacité de développer des produits de plus en plus complexes en
un temps plus court?

Une conséquence observée aujourd’hui est la dégradation de la qualité des
produits. En effet, beaucoup de produits électroniques sont mis sur le marché
alors qu’ils ne fonctionnent pas aussi bien qu’ils le devraient, notamment dans
le secteur des innovations. Après l’achat d’un produit il est souvent possible
de récupérer des mises à jour chez le constructeur qui corrigent des bogues ou
rajoutent des fonctionnalités au produit. Ce phénomène est très courant pour
de petits objets comme les téléphones portables et les graveurs DVD, mais plus
surprenant, on le trouve également sur les nouvelles voitures. Il apparâıt alors ici
comme une évidence qu’on ne mâıtrise plus la complexité des systèmes.

Pour lutter contre cette dérive et afin d’apporter une réponse plus satisfaisante
au problème, il serait souhaitable d’augmenter la productivité des développeurs.
Comme nous allons le voir, ceci peut être obtenu par l’utilisation (i) de niveaux

9

10

2003 2005 2007 2009 2011 2013 2015 2017 2019
0

2

4

6

8

10

12

14

16

18

20

22

24

année

m
ill

ia
rd

s
de

 tr
an

si
st

or
s

pa
r

pu
ce

 (
31

0
m

m
2)

Figure 1: Prédictions de la SIA en 2005 pour le nombre de transistors dans des
puces de haute performance [Ass06]

de description plus élevés, (ii) de modules existant prouvés, (iii) de méthodes
formelles et (iv) d’outils innovants et performants qui intègrent intelligemment
toutes ces fonctionnalités.

Aujourd’hui, le RTL (Register Transfer Level) est utilisé pour concevoir la
plupart des circuits électroniques. Cette technique ne sera simplement plus util-
isable d’ici quelques années car la complexité des systèmes ne sera plus abordable
en RTL. Une évolution inévitable est de passer à un niveau de description plus
élevé comme le TLD (Transaction Level Design) et le SLD (System Level Design)
afin de décrire les mêmes fonctionnalités de manière plus concise.

La réutilisation des composants (prouvés dans des designs antérieurs, ou
achetés) permettrait également de gagner en productivité. La difficulté est ici
de trouver la bonne description pour échanger ces informations afin de faciliter
la réutilisation d’un module par un maximum de projets différents. Elle doit être
suffisamment générique pour pouvoir être intégrée dans les simulateurs de haut
niveau, mais aussi suffisamment précise pour une utilisation au niveau physique,
tout en restant indépendante d’un processus de production spécifique. Au fait
que ces exigences semblent déjà impossible à satisfaire, il faut ajouter un fait
important qui oppose les vendeurs de propriétés intellectuelles. Ils sont atten-
tifs à protéger leur savoir-faire technologique et ne souhaitent donc pas révéler
les détails de l’implémentation. Les développeurs d’autre part, ont besoin d’un
descriptif détaillé afin de modéliser un environnement convenable.

Une erreur de conception dans un système est certes très coûteuse, mais elle
l’est encore plus si elle est repérée très tard dans le processus de développement.

11

C’est pour éviter ce type de perte de productivité qu’il est nécessaire de veiller
à ce que la qualité de construction soit maximale. Simuler une spécification ou
une description ne suffit pas. En effet, cela ne révèle qu’un sous-ensemble limité
d’erreurs qui sont fortement dépendantes du type de tests et des vecteurs d’entrée.
Au contraire, les méthodes formelles [Win90] offrent des possibilités bien plus
avancées pour réduire de manière drastique le nombre d’erreurs. Cependant, pour
chaque étape de la conception d’une application on compte un nombre important
de méthodes différentes et il est donc demandé de choisir la bonne. Aussi on
comprend qu’elles soient réputées difficiles à utiliser et réputées inadaptées aux
applications réelles par leur lenteur et leurs besoins en ressources. [Hal90, BH95a,
BH95b].

Pour terminer, améliorer la qualité des outils est indispensable pour réaliser
ce bond en avant en productivité. Ces nouveaux outils de conception doivent
couvrir l’ensemble de la conception du système, de la spécification de besoins
jusqu’à l’implémentation au niveau physique. L’idéal serait d’avoir un outil qui
transforme automatiquement une description comportementale en une descrip-
tion de niveau RTL. Mais aujourd’hui, il n’est pas envisageable d’obtenir des
résultats optimisés avec ce type d’outil. Cependant il est possible de faire un pre-
mier pas dans ce sens en effectuant un raffinement guidé. L’outil prend en charge
toutes les transformations triviales, et laisse à l’utilisateur le soin de fournir des
paramètres et de prendre des décisions de conception importantes. Il doit avoir
la possibilité d’intégrer correctement des composants de propriété intellectuelle
(IP) de bibliothèques prédéfinies pour remplacer des modules comportementaux
par des modules détaillés. Le défi dans la création de systèmes embarqués con-
siste donc en la mise à disposition de techniques qui indépendamment l’une de
l’autre améliorent et accélèrent tous les aspects de la conception, tout en réalisant
des environnements capables d’intégrer ces techniques de façon cohérente afin
de former un cadre sans rupture sémantique. Ces outils devront trouver un
équilibre entre l’automatisation d’un maximum de tâches et le contrôle incon-
testé de l’implémentation par le développeur.

Contributions principales

Pour représenter le comportement d’un programme par un type ou une proposi-
tion, on utilise l’algèbre STS comme proposé dans [TG04] et inspiré des systèmes
de transitions synchrones de Pnueli [PSS98]. On définit une syntaxe formelle
du noyau SystemC et on l’utilise pour créer une méthodologie et un système de
types comportementaux. On montre comment on peut inférer des types formels
et comportementaux depuis des modules SystemC existants et comment ces types
peuvent être exprimés dans Polychrony (chapitre 9).

12

L’étude de cas sur le filtre FIR dans chapitre 12 met cette théorie en pratique.
Elle est validée et il est montré en détail comment une telle extraction de types
peut marcher. Les outils nécessaires pour cette procédure sont identifiés et mis
en oeuvre.

Cependant ce système de typage ne permet pas de conserver l’information
structurelle d’un design. Dans la perspective de pouvoir traiter des systèmes
avec de nombreux modules sans perdre l’information structurelle, un parser/-
analyseur SystemC a été conçu et implémenté dans un prototype qui est capa-
ble d’extraire les informations structurelles. A partir de ces informations struc-
turelles, une représentation intermédiaire est créée ainsi qu’une représentation
XML (chapitre 13). Depuis cette structure interne, un squelette SIGNAL est
généré représentant la structure originale du code SystemC. Une méthodologie
est établie qui intègre la génération de types comportementaux SystemC modu-
laires avec l’extraction d’informations structurelles.

L’utilité des informations structurelles des systèmes embarqués en général
pour d’autres applications est illustré par un exemple de visualisation et un en-
vironnement de génération automatique de tests. Le logiciel SystemCXML a été
publié en tant que projet open source et hébergé sur Sourceforge [BMPS04].

Lors d’un travail avec Syed Suhaib, une méthodologie a été établie pour
la création de modèles formels de façon incrémentale avec des techniques em-
pruntées de la programmation extrême. Le but de cette méthodologie est de
baisser le niveau de difficulté de la création de modèles formels depuis des
spécifications en langage parlé et de créer des modèles formels correct par con-
struction (chapitre 14). En contraste avec l’approche de types comportementaux,
ces travaux montrent comment des méthodes formelles peuvent être utilisées plus
tôt dans un flot de conception afin d’obtenir une qualité de modèle supérieure.

Les limites des communications synchrones de systèmes à grande échelle peu-
vent être repoussées en utilisant des protocoles insensibles à la latence. Le
chapitre 15 montre comment de tels protocoles peuvent être vérifiés formelle-
ment et propose un protocole modifié qui améliore certains aspects sans faire de
compromis au niveau performance.

Chapter 1

Flot de conception conjointe

Pour des systèmes d’une complexité limitée, on développe un modèle de haut
niveau à partir d’une spécification textuelle du système qui comprend toutes
les fonctionnalités des parties matérielles et logicielles. Figure 1.1 montre les
étapes principales de la conception conjointe. Le modèle au niveau système
permet d’analyser le comportement global du système. On peut simuler le
modèle avec des vecteurs d’entrée et comparer les sorties avec ce qu’on attend
d’après la spécification. Ce niveau manque des détails d’implémentation comme
l’architecture des processeurs ou les types de bus utilisés pour la communica-
tion. Donc sa simulation ne permet pas d’obtenir des résultats pertinents au
niveau performance et timing, par contre il permet de vérifier le comportement
fonctionnel.

Après la vérification fonctionnelle du modèle au niveau système, on passe à
la phase implémentation du système. On rajoute des détails d’architecture, de
communication, et d’ordonnancement, et on répartit le système dans une partie
logicielle et une partie matérielle. À la fin de la phase d’implémentation on
obtient la partie matérielle au niveau RTL et la partie logicielle dans un code
exécutable (e.g. C ou C++). La validation et vérification de la fonctionnalité
du modèle devrait bien sur être faite à tous les niveaux du flot de conception.
Puisque le niveau RTL est le dernier maillon d’une châıne d’opérations plutôt
manuelles, la majorité des tests et simulations est traditionnellement faite à ce
niveau là [SVMS96]. L’étape suivante, la synthèse est aujourd’hui bien étudiée et
automatisée. Elle consiste pour la partie matérielle à trouver pour tout code RTL
des correspondances de fonctions logiques dans une librairie mise à disposition par
le processus physique de production de puce. L’élément de base de la librairie
est l’opérateur NON-ET et tous les autres éléments en sont dérivés. Ensuite
toutes ces fonctions logiques sont placées sur le plan de la puce et les connections
sont dessinées (place and route) afin d’obtenir un plan finalisé qu’on peut ensuite
passer en production. Pour la partie logicielle de la puce il suffit de la compiler.

13

14 Flot de conception conjointe

Synthèse

Spécification textuelle

Puce

Implémentation

Modélisation

Firmware +
programmes

Logiciel
(C-code)

Matériel
(RTL)

Modèle au niveau système

Figure 1.1: Flot de conception conjointe

Selon la complexité du système, on peut obtenir différentes couches de logiciel;
un Firmware ou Bios pour les plus simples, pendant que les plus sophistiquées
comprennent aussi un système d’exploitation et des applications.

1.1 L’approche modulaire

Vu la complexité de la plupart des projets, l’écriture du modèle au niveau système
en un seul bloc est très difficile. La spécification est donc découpée en morceaux
qui forment des unités fonctionnelles, et on définit des interfaces de commu-
nication entre ces entités pour pouvoir ensuite les traiter séparément. C’est
comme ça que plusieurs personnes ou groupes peuvent travailler relativement
indépendamment sur des modules distincts d’un même projet. En composant les
modules, on obtient le système final, comme décrit dans la spécification initiale.
Un modèle modulaire a aussi l’avantage de permettre la simulation séparée des
modules, donc un débogage plus localisé.

Figure 1.2 montre un flot de conception conjointe un peu plus détaillé. On
y voit une étape supplémentaire après le modèle au niveau système qu’on ap-
pelle exploration d’architecture comme dans [GZD+00]. Cette étape consiste
respectivement en trois phases: allocation d’éléments d’exécution, partition-
nement et ordonnancement. Pendant l’allocation d’éléments d’exécution on
choisit l’architecture d’exécution, on décide quels processeurs et autres éléments

L’approche modulaire 15

Synthèse

Spécification textuelle

Puce

Implémentation

Modélisation

A B C

B CA

Firmware +
Programmes

ZYW X

Exploration d’architectureRévision

Compilation

Figure 1.2: Flot de conception conjointe modulaire

d’exécution sont utilisés. Pendant le partitionnement, on décide quelles parties
du modèle sont exécutées sur les éléments d’exécution et lesquelles vont être
synthétisées en matériel. Ensuite pendant l’ordonnancement, on résout tout
parallélisme superflu. Si plusieurs modules sont exécutés sur un seul élément
d’exécution, on détermine l’ordre de leur exécution tout en respectant leurs points
de synchronisation.

Après l’exploration d’architecture, on obtient donc un autre modèle mod-
ulaire, le modèle au niveau architecture. Ses modules ne correspondent pas
forcément aux mêmes fonctionnalités que les modules du modèle au niveau
système. Le modèle au niveau architecture peut alors subir des tests de fonc-
tionnalités. Une simulation au niveau système est selon la complexité du modèle
toujours possible mais elle nécessite bien plus de ressources et de temps qu’au
niveau système. Pour une simulation plus rapide, on va simuler juste un ou peu
de modules au niveau architecture. Le reste du système est simulé au niveau
comportemental ce qui permet de focaliser sur des fonctionnalités spécifiques
tout en gardant le système complet comme environnement. La validation ou la
vérification d’équivalence sont d’autres méthodes pour assurer le fonctionnement
correcte du modèle. Ces méthodes comparent le comportement des modèles au
niveau architecture et système, pour savoir s’ils sont identiques.

Bien que le modèle au niveau architecture contienne déjà des détails
d’implémentation, il manque encore de nombreux détails par rapport au niveau

16 Flot de conception conjointe

RTL. Des manipulations comme le choix de protocoles de bus et l’implémentation
des interfaces correspondantes sont comprises dans l’étape implémentation à
l’issue de laquelle on obtient un modèle modulaire de la partie matérielle au niveau
RTL et un modèle modulaire de la partie logicielle dans du code exécutable.
Un modèle sur ce niveau de détail - appelé ici le niveau implémentation - ex-
ige beaucoup de temps et de ressources pour la simulation [Klo05]. Le modèle
d’un système entier ne peut donc pas être simulé en détail sur ce niveau. Il
existent cependant plusieurs techniques pour être capable de repousser la limite
de taille de modèle qu’on est capable de traiter. Ces techniques comprennent
l’émulation matériel [GNJ+96], l’accélération matériel [CMA02], la simulation
mixed level [JVBEK91], la co-simulation matériel logiciel [GCNCM92, BST92],
et d’autres approches spécialisés [YHP+97, Klo05].

Ce qu’on fait à la place, c’est de simuler chaque module séparément. Il est
aussi possible de simuler un module au niveau implémentation avec son environ-
nement qui est au niveau architecture.

Au total, la modularisation apporte une hiérarchisation des modèles. Des
fonctionnalités qui vont ensemble peuvent être isolées et donc développées et
testées séparément. Ceci est important pour distribuer le travail sur plusieurs
personnes ou équipes. Elle aide également à surmonter les limitations de certains
outils et méthodes par rapport à la complexité du modèle.

1.2 Réutiliser c’est accélérer

La réutilisation constitue un aspect important pour accélérer le processus de
développement de systèmes embarqués. Elle est une conséquence logique d’un
développement strictement modulaire. Si on parle aujourd’hui de familles de
produits et de générations de produits, on fait référence à toute une gamme de pro-
duits qui contiennent un grand sous-ensemble de modules identiques. Ils diffèrent
d’autres produits uniquement par quelques modules de modifiés ou rajoutés. Pen-
dant que la réutilisation dans le cadre d’une évolution ou spécialisation d’un pro-
duit semble évident, elle l’est moins quand l’environnement d’utilisation s’éloigne
de l’environnement d’intégration initial.Elle devient aussi plus difficile quand il
n’y a pas accès au développeur d’origine de cette propriété intellectuelle (IP) qui
connâıt en détail les fonctionnements internes.

Figure 1.3 montre comment des IPs peuvent être intégrées dans un flot de
conception conjointe. Puisqu’on travaille sur plusieurs niveaux d’abstraction d’un
système embarqué, un IP doit être disponible dans plusieurs niveaux d’abstraction
pour pouvoir l’intégrer dans tous les niveaux. On voit dans la figure comment
le IP A contient à la fois une description au niveau architecture et au niveau
implémentation. Ceci permet une simulation efficace au niveau architecture pour

Réutiliser c’est accélérer 17

A

B

C

Spécification textuelle

Puce

A B C

B CA

Firmware +
programmes

ZYW X

Révision

Figure 1.3: Flot de conception conjointe avec réutilisation

vérifier si l’environnement se comporte bien au niveau des entrées et sorties.
De plus, au niveau implémentation, le IP permet de passer directement à la
compilation pour le cas d’un IP logiciel ou de passer à la synthèse logique dans
le cas d’un IP matériel.

La réutilisation fait aujourd’hui partie intégrante de la majorité des projets,
soit sous forme d’IPs provenant du même projet ou de la même entreprise, soit
avec des IPs achetés chez des vendeurs IP commerciaux, soit des IPs disponibles
librement à la communauté (sur OpenCores.org [Cor] par exemple). Néanmoins
une intégration IP réussie pose de nouveaux défis aux ingénieurs. Il est difficile
d’intégrer correctement un composant sans avoir participé à son développement.
Les protocoles des entrées et des sorties par exemple sont figés par le code du com-
posant, mais la documentation n’est souvent pas très détaillée. En plus du code
d’implémentation, il faut une documentation pertinente décrivant les interactions
avec l’extérieur. Mais même une documentation bien détaillée peut contenir des
erreurs ou laisser plusieurs possibilités d’interprétation. Pour des composants
complexes la tâche reste complexe même avec une description détaillée, puisqu’il
est difficile de vérifier si l’environnement adhère à toutes les exigences de la de-
scription.

Pour compliquer davantage, les vendeurs d’IP préfèrent conserver un maxi-
mum de détails d’implémentation afin de lutter contre le plagiat. Ils préfèrent
proposer des IPs bôıte noire ou bôıte grise qui ne contiennent pas le code source

18 Flot de conception conjointe

de l’implémentation mais uniquement les objets compilés ou synthétisés. Ceci est
un dilemme évident dans la pratique de la réutilisation d’IP pour des systèmes
embarqués.

Pour résumer, la complexité des projets et la cadence du marché des systèmes
embarqués nécessitent la réutilisation de composants du système, et elle est
déjà largement pratiqué dans l’industrie. Par contre le potentiel énorme de
la réutilisation pour l’accélération des processus de développement et pour
l’avancement dans la complexité des systèmes n’est pas facile à exploiter. L’effort
et les coûts supplémentaires pour l’intégration et le test de ces composants en-
travent des gains de productivités plus importants.

Chapter 2

Pourquoi utiliser des méthodes
formelles dans la conception
conjointe?

Les méthodes formelles sont basées sur des techniques mathématiques pour la de-
scription de propriétés dans le cadre d’un développement de systèmes matériels
et logiciels. Des méthodes formelles servent à spécifier, développer, et vérifier
des systèmes d’une façon systématique. Il y a plusieurs intérêts à utiliser des
méthodes formelles dans la conception conjointe, en particulier pour la prévention
et à la détection d’erreurs. Dans la suite nous détaillerons les principales moti-
vations à utiliser les méthodes formelles dans la conception conjointe.

2.1 Assurer que la spécification soit complète

Dans la conception conjointe, une première utilisation des méthodes formelles
serait d’assurer que la spécification est conforme à ce qui est décrit dans le cahier
des charges du système. Il est difficile d’assurer qu’une spécification non-formelle
contienne tout ce qui a été prévu dans les demandes initiales.

Il est également difficile de veiller à ce que la spécification ne contienne pas
de détails d’implémentation. Si elle contient des détails superflus, elle contraint
l’implémentation à respecter ces détails, ce qui peut entrâıner des inconvénients
au niveau des performances et de la structure. Une spécification formelle n’est
pas entièrement immunisée contre ce type de défauts, mais elle en contient con-
ceptionnellement moins.

19

20 Pourquoi utiliser des méthodes formelles dans la conception conjointe?

2.2 Réduire le nombre d’erreurs dans la spécifi-

cation

Une deuxième raison pour l’utilisation de méthodes formelles serait de chercher à
obtenir une spécification qui contient moins d’erreurs. En contraste au point
précédent, il ne s’agit pas d’inclure ou d’exclure des comportements dans la
spécification mais plutôt de s’assurer que ce qui est décrit est correct. Sachant
que toute erreur dans la spécification est susceptible d’être propagée dans
l’implémentation et que les coûts impliqués par la correction d’une erreur aug-
mentent si elle est découverte plus tard dans le processus de développement, il est
important de déboguer la spécification le plus méticuleusement possible. D’un
point de vue commercial il est également conseillé de faire plus d’efforts dans
la prévention d’erreurs afin d’éviter des coûts plus élevés après. Il est surtout
important d’éliminer les problèmes de fonctionnalité sur ce niveau là puisqu’il est
difficile de vérifier des comportements globaux dans un modèle plus détaillé. Des
simulations avec des vecteurs de test limités d’une spécification non-formelle ne
peuvent pas découvrir tous les problèmes, avec des méthodes formelles par contre
on peut en découvrir davantage.

2.3 Réduire le nombre d’erreurs dans l’implé-

mentation

Toute implémentation contient des problèmes, et une bonne partie du
développement est dédiée au test et au débogage de l’implémentation finale. Alors
que de vastes tests et simulations sont indispensables, les vecteurs d’entrées choi-
sis ne peuvent que couvrir une petite partie de l’ensemble des états possibles du
système. Les méthodes formelles sont un complément important pour éliminer
plus de problèmes fonctionnels et logiques dans une implémentation. Beaucoup
d’outils de recherche se concentrent sur ce domaine.

2.4 Accélérer le développement, réduire les

coûts

Un des mythes évoqués dans [Hal90] dit que des méthodes formelles sont coûteuses
à utiliser et que leur utilisation demande beaucoup de temps. Même s’il est
vrai que l’utilisation de méthodes formelles prend un certain temps et coûte de
l’argent, son rendement peut être énorme s’il aide à éviter seulement quelques
erreurs critiques. En utilisant des méthodes formelles, la phase de spécification

Améliorer la fiabilité du système 21

du projet prend typiquement plus de temps, par contre, avec une spécification
claire et correcte, l’implémentation, l’intégration et la phase de tests peuvent être
effectuées beaucoup plus rapidement. Il est difficile de mesurer objectivement la
productivité du développement et la qualité d’un système pour des méthodologies
différentes. Mais beaucoup d’entreprises utilisant des méthodes formelles parlent
de temps de développements et coûts réduits par rapport à des méthodologies
plus conventionnelles.

2.5 Améliorer la fiabilité du système

Pour des produits comme un lecteur portable multimédia ou un système hi-fi de
voiture, la fiabilité n’est pas un sujet primordial. L’utilisateur accepte quelques in-
convénients, mais trop de fautes et des blocages fréquents vont être une expérience
insatisfaisante pour le client. Pour des téléphones portables, la fiabilité devient
déjà un sujet important et il est considéré comme normal qu’un nouveau téléphone
nécessite des mises à jour du fabricant dans les premiers mois pour enlever des
erreurs importants. Les temps de développement très limités par le marché vont
accentuer cette tendance dans les années à venir; on va connâıtre des mises à jour
pour le téléviseur, la climatisation et le chauffage domestique jusqu’au four et la
machine à laver.

Même si une multitude d’erreurs peuvent être corrigées avec des modifications
de firmware et que les mises à jour vont devenir de plus en plus transparentes
pour l’utilisateur, chacune cause des coûts au fabricant et diminue la confiance du
consommateur dans le produit et dans la marque. La vérification formelle pour
les systèmes embarqués de base pourrait contrer cette tendance et permettre au
fabricants de livrer des produits d’une qualité supérieure.

Il y a une catégorie de systèmes entièrement différente pour laquelle les
méthodes formelles se sont déjà établies dans les flots de conception standard,
ce sont les systèmes critiques. Des systèmes comme le contrôle de réacteurs
nucléaires, des parties critiques d’un avion ou la commande de missiles nécessitent
une fiabilité maximale qui ne peut être atteinte qu’avec l’utilisation de méthodes
formelles tout au long du processus de développement. Le succès que les méthodes
formelles ont connus dans ces domaines et le manque croissant de fiabilité dans
les produits de tous les jours mettent en évidence l’inévitable universalisation des
méthodes formelles.

2.6 Prouver le respect de standards

Dans le développement de systèmes à grande échelle en particulier, le respect de
standards joue un rôle très important. Être capable de prouver le respect d’un

22 Pourquoi utiliser des méthodes formelles dans la conception conjointe?

standard pour des protocoles de bus ou des API standardisés, facilite l’intégration
à grande échelle. Si un standard est bien formulé et si on peut prouver que deux
composants respectent celui-ci, on peut supposer que les deux composants vont
bien pouvoir communiquer ensemble.

L’utilisation de méthodes formelles peut assurer qu’un composant suit un cer-
tain standard d’une façon beaucoup plus fiable que de simples tests ou simulations
pourraient le faire. Des propriétés formelles peuvent vérifier les fonctionnalités
importantes des interfaces et ainsi valider le respect du standard.

Chapter 3

L’intégration de méthodes
formelles dans la conception
conjointe

Selon les besoins, les résultats souhaités et les goûts, il y a différentes manières
d’introduire des méthodes formelles dans un flot de conception conjointe tradi-
tionnel. Comme détaillé en Chapitre 2 l’utilisation de méthodes formelles a deux
buts majeurs: la prévention d’erreurs et la détection d’erreurs. L’utilisation en
amont dans la conception a un caractère plutôt préventif alors qu’une utilisation
en aval de la conception cible plutôt la détection de problèmes. Les différents em-
plois de méthodes formelles sont aussi divers que les méthodes formelles et que
les différentes étapes de conception elles mêmes. Pour promouvoir l’adoption du
formel dans l’industrie, il est question aujourd’hui d’identifier des méthodologies
de conception et des méthodes formelles adaptées pour atteindre un résultat op-
timal d’une façon efficace.

Cette partie présentera trois pistes que nous avons suivies, et qui illus-
trent comment intégrer les méthodes formelles dans différentes étapes du flot
de conception conjointe. Ces approches sont assez différentes et potentiellement
complémentaires et montrent comment la diversité des méthodes formelles et les
différentes couches de la conception donnent un vaste champ d’application.

3.1 Transformation automatisée vers un lan-

gage formel

Un des plus grands reproches fait aux méthodes formelles concerne leur com-
plexité d’utilisation et le fait qu’elles ne soient pas adaptées aux besoins des
ingénieurs. Ce point faible pourrait être éliminé si on arrivait à les utiliser, sans

23

24 L’intégration de méthodes formelles dans la conception conjointe

que l’utilisateur s’en aperçoive. Comme la réutilisation de composants est un sujet
d’importance croissante, on a travaillé sur l’utilisation automatique de méthodes
formelles pour détecter plus de fautes dans la composition de blocs IP. Dans
ce but on génère des interfaces comportementales formelles à partir de blocs IP
non-formelles.

L’interface d’un composant IP ne contient traditionnellement pas beaucoup
d’informations. Souvent, seuls les signaux d’entrée et de sortie sont spécifiés ainsi
que leur types respectifs. En plus de cela la documentation textuelle des com-
posants peut contenir des informations sur la communication avec le composant
pour en assurer le bon fonctionnement. Pour plus de détails on peut d’habitude se
renseigner dans le code source des composants. Par contre pour des IPs achetés à
un tiers, cette option n’est souvent pas disponible puisque les vendeurs préfèrent
fournir des boites noires ou grises pour ne pas perdre le contrôle sur le code et
pour empêcher leurs clients d’effectuer eux-même des adaptations.

Des interfaces comportementales peuvent contenir bien plus d’informations
sur un composant que les noms et types des entrées / sorties. Elles peuvent
contenir des informations comportementales du composant comme la synchroni-
sation de signaux, des relations temporelles entre signaux et tout autre détail de
comportement jusqu’à sa représentation complète. De la même façon qu’un com-
pilateur vérifie si les types de données de deux signaux connectés sont compatibles,
un outil formel peut signaler des erreurs dans l’interaction de deux composants
quand les interfaces formelles sont composées.

Dans l’article [TGB+03], on montre comment passer automatiquement d’une
description non-formelle à une représentation formelle. Une description JAVA
temps réel est automatiquement traduite dans le formalisme SIGNAL [BLJ91]
pour ensuite faire un mapping sur une architecture d’exécution spécifique. Les
résultats montrent des gains de performance importants en temps d’exécution
grâce à l’optimisation de l’ordonnancement.

Dans [TBS+04a], on présente la théorie pour un système d’inférence de types
comportementaux formels. SIGNAL est utilisé comme support formel qui permet
une description de systèmes avec différentes horloges. Ce formalisme est bien
adaptée à cette tâche entre autres parce qu’il permet d’exprimer d’une façon
naturelle les notions de dépendance et de synchronisation entre signaux. Comme
environnement non-formel, cet article se base sur un flot de conception SystemC,
qui est un des cadres de conception au niveau système les plus populaires.

3.2 La modélisation formelle itérative

Cette approche se base sur l’hypothèse que beaucoup d’erreurs dans l’implémentation
sont dues au fait que la spécification n’est pas suffisamment claire, qu’elle contient

Validation de protocoles insensibles aux latences 25

des erreurs logiques qui passent souvent inaperçues jusqu’à très tard dans le pro-
cessus de développement. Des fautes dans une conception provoquent toujours
des coûts, mais encore plus s’ils sont découverts dans une étape ultérieure. Leur
coûts sont maximales après le déploiement chez le client.

On comprend donc bien l’intention derrière cette approche, par contre elle
n’est pas sans problèmes. Le développement de spécifications formelles est sou-
vent assez complexe et n’est toujours pas mâıtrisé par la plupart des ingénieurs. Il
demande également de passer plus de temps dans la période de spécification, ce qui
peut signifier qu’on prend plus de temps pour créer une première implémentation
prototype. La vérification de spécifications formelles peut prendre beaucoup de
temps et de ressources comme la mémoire vive et le temps de processeur, et sou-
vent des abstractions doivent être faites pour que la vérification se termine en un
temps acceptable.

Une fois que la spécification formelle est complète et vérifiée, on commence à
construire l’implémentation correspondante. Évidemment, il est difficile de garan-
tir la transformation correcte, mais néanmoins une certaine catégorie d’erreurs a
été éliminée.

On propose une approche différente pour créer des modèles formels. On utilise
des méthodes agiles comme dans le Extreme Programming (XP) pour construire
incrémentalement des modèles corrects par construction (CBC). On pense que
suivant cette approche on est plus rapide à créer les modèles et qu’ils sont mieux
structurés ce qui facilitera le passage à l’implémentation.

3.3 Validation de protocoles insensibles aux la-

tences

Dans la conception de systèmes embarqués de taille importante et avec des hor-
loges rapides, on atteint de plus en plus souvent une barrière où certains fils
sont plus longs que la propagation d’un signal pendant un tic d’horloge. Suivant
des estimations très optimistes, les délais pour des fils optimisés vont s’élever au
moins entre 6 et 10 cycles pour une puce à 10 GHz fabriqué en 50 nm [BM02].
Pour ces puces, une conception strictement synchrone n’est plus possible, ils
ont besoin de multiples domaines d’horloges ou de désynchronisations. Le do-
maine des protocoles insensibles à la latence [CMSV01] s’occupe justement de
ces problématiques. Plusieurs protocoles ont étés présentés qui - d’une façon plus
ou moins automatique - cherchent à éliminer les conséquences de fils longs sans
être obligé d’effectuer trop de modifications dans les composants synchrones orig-
inaux. Un des problèmes des protocoles insensibles à la latence est par contre
la preuve de l’exactitude de la transformation. Bien que la plupart des auteurs
de ces protocoles affirme que le comportement avant et après les transformations

26 L’intégration de méthodes formelles dans la conception conjointe

est préservé par construction, peu livrent des preuves formelles et celles qui sont
fournies sont incomplètes ou difficile à suivre.

Dans [SMBS05], on a tenté de vérifier formellement la préservation du com-
portement avec un model checker. On fait ceci sur plusieurs versions de protocoles
ainsi que sur une version que nous avons proposée, basée sur l’implémentation
de Carloni, qui élimine le besoin pour des stations de relais - au dépens de
fils supplémentaires. Dans [SBM+05], on utilise la programmation fonctionnelle
pour la validation de différents protocoles insensibles aux latences. Finalement,
[SMBS06] résume tous nos travaux sur ce sujet.

Chapter 4

Mise en oeuvre

Ce chapitre décrit les différentes étapes de l’intégration de méthodes formelles à
différents moments du flot de conception conjointe.

4.1 Transformation de composants SystemC en

SIGNAL

Pour illustrer la génération de modèles formels à partir de composants non-formels
on a choisi SystemC [GLMS02] comme langage d’entrée, SystemC étant un des
langages les plus répandus pour la modélisation au niveau système. Le formal-
isme de sortie est le langage SIGNAL. Ce langage fait partie de l’environnement
Polychrony [IRI] qui dispose d’outils comme le vérificateur de modèle, SI-
GALI [MBLL00]. SIGNAL est un langage synchrone orienté flot de données qui
permet de représenter des modèles polychrones, c’est-à-dire des modèles pouvant
contenir plusieurs horloges.

La figure 4.1 montre le flot de conception pour cette approche. Pour traduire
le comportement d’un module SystemC, on utilise le compilateur GCC et son
format intermédiaire GIMPLE/SSA. La structure de contrôle d’un code GIM-
PLE/SSA est beaucoup plus simple que celle d’un code C++ et en conséquence
une représentation GIMPLE/SSA est plus facile à traduire. Par contre, on perd
l’information sur la structure initiale du programme SystemC. Une transforma-
tion purement comportementale, sans conservation de structure a cependant
plusieurs inconvénients. Sans cette information structurelle, il est très difficile
pour le compilateur de SIGNAL de faire des optimisations de haut niveau comme
par exemple pour l’ordonnancement. De plus, sans structuration le code SIG-
NAL résultant devient illisible et complique donc toute modification manuelle
du modèle. Finalement une fois une erreur se manifeste dans le modèle généré,
il est difficile la tracer dans le modèle d’origine. Donc, sans informations struc-

27

28 Mise en oeuvre

SystemC SystemC

SIGNAL

GCC

traduction pré-traitement post-traitement

GIMPLE /
SSA

SystemC

Figure 4.1: Traduction de modules SystemC en SIGNAL

turelles, une transformation correcte d’un modèle SystemC en SIGNAL n’est pas
très utile. C’est pour cette raison qu’on extrait d’abord l’information structurelle
comme décrit en section 4.2, et seulement ensuite on traduit le comportement des
modules.

Il faut aussi noter que GCC ne connâıt pas les macros SystemC. Donc, si elles
étaient traitées directement avec GCC, elles seraient expansées, ce qui rendrait
difficile la lisibilité du code généré. C’est pourquoi, afin de générer du code plus
propre, il est nécessaire de faire du pre-processing pour masquer ces macros à
GCC, puis de passer par GCC avant de finalement les faire réapparâıtre dans le
code SSA pendant une étape de post-processing.

Dans [BTSG04], on démontre comment, se basant sur la théorie de [TBS+04a],
des types comportementaux formels peuvent être générés automatiquement. À
l’aide d’une étude de cas sur un filtre à réponse impulsionelle finie (RIF), cet
article montre le flot complet de transformations de composants SystemC en
une description SIGNAL. Il montre également comment GCC et son format in-
termédiaire GIMPLE/SSA peuvent être utilisés pour faciliter cette transition.
Cette approche est présentée plus en détails dans [TBS+04b]. Toutefois, ces ar-
ticles ne donnent aucune solution quant à la préservation de l’architecture du
système qui est difficilement restaurable, voire perdue si on utilise une approche
basée uniquement sur GIMPLE/SSA. Le procédé présenté dans ces travaux est
donc utilisable pour le traitement de composants un par un, mais pas pour un
système composé de plusieurs modules. La partie suivante présentera une solution
pour préserver la structure du programme.

Extraction d’informations structurelles de modèles SystemC 29

4.2 Extraction d’informations structurelles de

modèles SystemC

SystemC SIGNAL

SystemCXML

GCC-SSA

Figure 4.2: Méthodologie pour la transformation de SystemC vers SIGNAL

Afin d’éviter le problème de perte d’informations structurelles, on extrait
d’abord ces informations du code original SystemC avant de traduire le com-
portement des modules comme cela est présenté dans la section 4.1. Ainsi, on
a réalisé un front-end pour SystemC qui est présenté dans [BPM+05b]. Cet
outil permet d’analyser des projets SystemC entiers, d’extraire leur informations
structurelles et de générer ensuite un squelette formel en SIGNAL. Ce squelette
représente uniquement l’architecture du programme d’origine avec l’information
sur les modules et leurs connections, mais sans information sur le comportement
de ces modules. Ensuite, il est possible de générer ce comportement à partir de
ce squelette, de GCC et des transformations GIMPLE/SSA → SIGNAL. Ainsi,
grâce aux informations de contrôle, le compilateur SIGNAL est capable de faire
des optimisations de haut niveau comme par exemple un ordonnancement plus
efficace.

Ces informations structurelles sont converties dans une représentation XML.
Dans [BPM+05b], on démontre comment cette représentation peut être utilisée
dans d’autres cadres, comme la visualisation de différents aspects d’un modèle
ou la génération automatisée de tests. Il existe d’autres outils qui permettent
de visualiser des modèles SystemC, mais ils comportent certaines limitations par
rapport à notre implémentation. Certains de ces outils ne sont pas libres comme

30 Mise en oeuvre

par exemple l’outil Incisive de Cadence [Cad05]. D’autres, comme [GLLA03],
nécessitent des modifications de la librairie SystemC . Enfin, d’autres encore,
comme les outils gSysC [EAH05] ou SystemPerl [Sny], exigent des modifications
dans les modèles SystemC.

Dans [PMBS06], tous ces résultats sont placés dans un contexte plus large pour
décrire une architecture orientée services pour la validation de modèles au niveau
système. L’analyse de l’architecture SystemC y est utilisée pour une plateforme
qui offre des services comme l’introspection et la réflection, le débogage interactif,
la visualisation et la génération automatisée de tests fonctionnels.

4.3 Modélisation formelle itérative

La modélisation formelle itérative consiste à utiliser les méthodes agiles - utilisées
avec beaucoup de succès dans la programmation extrême (PX) [Bec00] - pour la
construction de modèles formels, afin d’accélérer leur construction et d’améliorer
leur qualité en terme de nombre d’erreurs et de structuration.

spécification
langage parlé

propriétés
temps linéaire

modèle abstrait
ad hoc

model checking

révision

Figure 4.3: Construction classique de modèles formels

La figure 4.3 montre comment un modèle formel est habituellement construit.
Partant d’une spécification exprimée dans un langage usuel comme l’anglais ou le
français, on écrit un modèle abstrait ad hoc. Selon la taille du système décrit ceci
peut être assez grand. Après on définit des propriétés en temps linéaire qui sont
également déduites de la spécification initiale. À partir de ces propriétés formelles,
le modèle formel doit être validé avec un Model Checker comme SPIN [Hol03a].
Cependant, cette approche connâıt plusieurs problèmes. D’abord, il peut y avoir
des erreurs dans le processus de construction d’un modèle formel et les efforts pour
la construction et le débogage des modèles augmentent exponentiellement avec
la taille. Puis, comme il n’y a pas de mécanisme pour vérifier que les propriétés
formelles ont toutes été spécifiées, il est très probable d’en omettre quelques unes

Modélisation formelle itérative 31

ce qui en revanche va réduire la pertinence de la vérification du modèle. Aussi,
si le modèle contient une erreur il est difficile de la trouver puisque les outils de
vérification souvent ne donnent aucune indication par rapport à l’emplacement
dans le code du problème. Finalement, un modèle ainsi construit a tendance à
contenir plus de comportements que ce qui est nécessaire d’après la spécification.
Le modèle peut donc contenir des propriétés non voulues qui vont être propagées
dans l’implémentation.

User Story
1

User Story
2

User Story
N

Property
1

Property
1 + 2

Property
1+2+….+N

Model

Final Model

Model
Check

Satisfied

No

Yes

ModelModel
Check

Satisfied

No

Yes

ModelModel
Check

Satisfied

No

Yes

Spoken Language
Specification

Figure 4.4: La modélisation formelle itérative

La figure 4.4 montre le processus de la modélisation formelle itérative. Comme
dans la PX, on extrait des petits scénarios (user stories) de la spécification in-
formelle. Ces scénarios décrivent une fonctionnalité spécifique du système qui
peut alors être représentée par une propriété formelle. On choisit d’abord un
scénario, puis on écrit le modèle formel correspondant et enfin on vérifie son ex-
actitude en faisant du model checking avec la propriété formelle associée. Une fois
ce petit modèle validé, on choisit un autre scénario, et élargit ce modèle de façon
à ce qu’il contienne cette nouvelle fonctionnalité. Par la suite, on vérifie à la fois
la validité de la propriété du nouveau scénario et de toutes les propriétés déjà
intégrées dans le modèle. Et ainsi de suite jusqu’à ce que le modèle contienne
tous les scénarios et que toutes les propriétés formelles soient vérifiées.

Un des avantages de cette méthodologie est que la construction de modèles
formels est plus contrôlée. Si entre deux étapes incrémentales le nombre d’états

32 Mise en oeuvre

change de beaucoup, la cause de cette est identifié et peut donc éventuellement
être évitée, soit par la réécriture des changements apportés, soit par l’intégration
des changements apportés plus tard dans la création de modèle. La création de
propriétés formelles se fait en même temps que la création du modèle. Donc,
dès le début, on a un modèle formel exécutable et vérifié. Si la vérification
d’une propriété échoue, on sait que l’erreur est due aux changements les plus
récents et elle est donc plus facile à trouver. Un autre point fort est que cette
représentation est très proche de la spécification d’origine. Comme la spécification
est coupée en petits bouts et que l’ajout de ces pièces au modèle est surveillé en
détails, le modèle formel de sortie est plus près de la spécification d’origine que
si le modèle avait été créé directement. Ainsi, il est moins probable d’omettre
des fonctionnalités puisque chaque scénario est intégré, et d’inclure des détails
d’implémentation non voulus puisque, à chaque itération, seul le comportement
correspondant strictement au scénario actuel est inclus.

Cette approche présente néanmoins toujours des difficultés. Comme avec
l’approche ad hoc, il n’est pas évident de savoir si une propriété est correctement
formulée. Pour exprimer correctement des propriétés formelles à partir d’une
spécification verbale, il faut de l’expérience. Dans nos travaux, on utilise un
visualiseur graphique de propriétés LTL (Linear Time Temporal Logic) [Odd01].
La représentation sous forme de machine à états finis permet de mieux évaluer si
une propriété LTL correspond vraiment à ce que l’on voulait exprimer.

La méthodologie de la modélisation formelle itérative est présentée dans
[BSST04]. On y trouve une illustration bien détaillée des différentes étapes comme
la définition des propriétés formelles et l’extension itérative du modèle. On y
démontre aussi l’approche avec plusieurs exemples plus ou moins complexes, le
plus grand étant une pipeline DLX. Dans [SMBS04], on montre comment cette
approche peut être utilisée pour des modèles matériels assez importants. On y
traite notamment la construction de modèles formels pour le bus ISA et pour la
phase d’arbitrage de bus du processeur Pentium Pro de Intel. Ces expériences
valident notre approche pour des modèles plus grands et démontrent son utilité
pour spécifier des applications matérielles.

L’article de journal [SMSB05] synthétise tout sur le sujet de la modélisation
formelle itérative. En outre, on y étudie la dépendance de la qualité du modèle
et l’ordre de modélisation des propriétés. On constate qu’en changeant l’ordre de
modélisation des propriétés, le modèle résultant change aussi en taille et en nom-
bre d’états accessibles. Différentes méthodes d’ordonnancement sont comparées
afin d’optimiser la taille du modèle final ainsi que son espace d’états. L’article
présente aussi une interface graphique pour expérimenter les effets des différents
ordonnancements.

Conclusion

Les systèmes à grande échelle et la réutilisation croissante de composants depuis
de sources diverses rendent la validation de systèmes extrêmement difficile. Les
tests et simulations restent des méthodes de validation importantes, par con-
tre ils ne suffisent plus pour un nombre d’applications de plus en plus impor-
tant. Les modèles et méthodes formels sont une réponse possible à ce problème.
Cependant, il est difficile de créer des modèles formels corrects. De plus, la
plupart des ingénieurs de développement et vérification n’ont pas l’habitude
d’utiliser des méthodes formelles et sont réticents envers leur adoption vu les
efforts supplémentaires significatifs à fournir. Des contraintes time-to-market de
plus en plus strictes et la réutilisation nécessitent donc l’intégration des méthodes
formelles dans les flots de conception standards des systèmes embarqués.

Dans ce document, nous avons essayé de montrer dans quelle mesure la concep-
tion de systèmes embarqués peut profiter de l’utilisation de méthodes formelles.
Pour cela, nous avons présenté plusieurs exemples concernant les difficultés et
les divers modes d’utilisation dans la conception conjointe. Une des conditions
pour une adoption globale des méthodes formelles dans les flots de conception
standards pour systèmes embarqués est de cacher aux utilisateurs, du moins en
partie, leur complexité inhérente. Ceci doit être fait sans trop limiter les bénéfices
des outils formels: des définitions claires et des possibilités de vérification.

Il y a plusieurs pistes menant vers ce but. Une option est de créer automa-
tiquement une description formelle depuis des modèles de systèmes non formels.
Le chapitre 9 montre avec l’exemple du langage SystemC et l’environnement
synchrone Polychrony comment des modèles formels peuvent être générés au-
tomatiquement a posteriori depuis des descriptions de systèmes existantes. Le
chapitre 12 montre comment ces techniques peuvent être utilisées en pratique pour
la vérification de systèmes modulaires. La méthodologie est détaillée, présentant
les outils impliqués et le processus en pratique au travers d’une étude de cas.

Un inconvénient de cette méthodologie est la nature monolithique du modèle
résultant. Puisque la structure du modèle original n’est pas retenue, il est dif-
ficile de garder une vision claire pour les grands systèmes, et de remonter les
erreurs jusqu’à leur source. Pour éliminer ces restrictions, notre méthodologie
a été étendue pour permettre d’abord d’extraire les informations structurelles

33

34 Mise en oeuvre

de la description système existante, puis de transformer cette structure dans le
formalisme cible. Le comportement des modules peut ensuite être transformé
séparément pour remplir les boites de la structure formelle. Le chapitre 13 décrit
la partie structure de la méthodologie et détaille comment l’effort pour anal-
yser du code SystemC peut être minimisé par l’utilisation intelligente d’outils
open source comme Doxygen, l’analyseur XML Xerces et GCC. La transforma-
tion séparée de la structure et des comportements a pour résultat un modèle
formel qui d’un coté contient les détails comportementaux nécessaires pour ef-
fectuer certaines vérifications formelles, et d’un autre coté préserve la structure de
contrôle du modèle original. Ceci facilite la remontée des erreurs, la réutilisation
de composants et les optimisations d’ordonnancement.

Une autre possibilité dans l’utilisation de méthodes formelles est de débuter
la conception conjointe avec un modèle formel. Puisqu’une description formelle
modélise des spécifications très clairement et sans équivoque, c’est intuitivement
une bonne façon de commencer la modélisation d’un système. Toujours est-il que
de commencer avec une description formelle présente aussi des failles et dangers,
comme par exemple la difficulté de comprendre intuitivement des expressions
formelles, et les problèmes liés au nombre d’états du modèle. Le chapitre 14
présente une méthodologie qui tente de simplifier le processus de construction
de modèles formels. Elle emprunte des méthodes de la programmation extrême
pour construire des modèles formels de façon incrémentale avec les tests formels
correspondants. Comme les modèles sont vérifiés dès le début et tout au long du
processus, les erreurs sont détectées plus tôt et des accroissements brusques du
nombre d’états sont constatés à leur source et peuvent être évités ou réduits.

Avec une complexité grandissante des systèmes embarqués viennent des
problèmes d’intégration sur puce. Certains fils qui relient des composants peu-
vent être plus long que ce que permettrait la vitesse de marche anticipée. Une
façon de dépasser cette limite, serait d’insérer des tampons tout au long de ces fils
de communication et de rajouter une logique qui se chargerait de déterminer les
valeurs manquantes et les délais supplémentaires. Cette logique n’est pas facile
à insérer et peut induire des changements majeurs dans des composants ou dans
l’architecture du système entier. La théorie des protocoles insensibles à la latence
met en place des méthodes qui permettent la génération automatique d’interfaces
de protocoles quand cela est requis. Elle définit également des critères auxquels
les composants doivent répondre pour être compatibles avec l’application de ces
techniques. Le chapitre 15 présente une méthodologie qui aide à formellement
vérifier que le résultat d’une telle conversion correspond fonctionnellement ex-
actement au système sans délais de communication. Il est montré comment des
protocoles existants insensibles à la latence peuvent être modélisés et vérifiés
formellement. Cette méthode est appliquée avec succès au protocole proposé par
Carloni en le vérifiant dans notre environnement de test. Dans la suite, un pro-

Modélisation formelle itérative 35

tocole modifié est proposé qui dispose de la nécessite d’insertion de répétiteurs
sur les longs fils sans que la performance du système soit affecté. Ce protocole
est vérifié de la même façon.

Perspectives

Le travail présenté dans ce document décrit une méthodologie avec laquelle il est
possible d’extraire des types comportementaux formels depuis des descriptions
SystemC. Les bénéfices possibles d’un tel projet sont évidents. Par contre, la
puissance réelle d’une telle approche peut uniquement être démontrée avec un
outil qui peut effectuer ces tâches automatiquement sur un sous-ensemble suff-
isamment complet du langage d’entrée. Dans l’état actuel, il manque quelques
étapes avant d’atteindre ce but. Pendant que l’extraction automatique de la
structure et la génération de squelettes de processus SIGNAL correspondants
sont implémentées, il faut encore automatiser la transformation du code SSA vers
SIGNAL. Des travaux ont déjà été menés sur ce sujet et les premiers résultats
sont présentés dans [KTBB06]. Dès que le code SSA pourra être traduit automa-
tiquement, une librairie SIGNAL correspondant à la librairie SystemC en C++
devra être mise en place. Beaucoup de ces fonctions sont déjà disponibles grâce
au travail présenté dans [GGG06], mais il faut encore le compléter et le tester.
Un élément important de cette librairie sera l’équivalent de l’ordonnanceur Sys-
temC en SIGNAL, qui est indisponible pour assurer un comportement runtime
équivalent. Finalement, la transformation SSA-SIGNAL devra être intégrée avec
SystemCXML pour automatiquement compléter les squelettes SIGNAL générés.

Une fois que l’extraction de types marchera de façon automatique, il serait
intéressant de voir comment elle se comporte en ce qui concerne le passage à
l’échelle des projets, et avec des différents types de systèmes. La transforma-
tion SSA-SIGNAL une fois mise en place devrait également marcher avec les
autres langages supportés par GCC comme Fortran, Java et ADA et donc il
serait également très intéressant de voir comment l’extraction comportementale
marcherait pour ces langages là. Une autre chose serait d’étudier comment les per-
formances de la simulation et de la vérification sont affectées à différents niveaux
d’abstraction.

Le travail sur la modélisation incrémentale formelle montre que des techniques
de la programmation extrême peuvent être appliquées à la création de modèles
formels. Les résultats sont encourageants et semblent indiquer que la création
de modèles formels de façon incrémentale est plus rapide et plus fiable qu’en
utilisant des techniques standards. Toutefois, il faudrait étudier les effets de
cette méthode en terme de temps de développement, performance et qualité pour
un nombre significatif de projets. Une telle étude pourrait être effectuée avec la

36 Mise en oeuvre

coopération d’entreprises de développement. Par contre elle demanderait toujours
de ressources considérables, et ses résultats dépendraient beaucoup des types de
projets et de l’expérience des développeurs. Pour la programmation extrême,
un nombre d’études ont été entreprises qui vont dans cette direction [SASB04,
LWC04], mais il n’existe toujours pas une opinion prédominante sur l’avantage
empirique de la méthode [Lay04, LBB+02]. Donc pour la modélisation formelle
incrémentale une étude empirique est loin d’être réalisée. Par contre, un prochain
pas pourrait être son déploiement dans un environnement industriel pour avoir
des retours des développeurs et des chefs de projets.

Enfin, la vérification des protocoles insensibles à la latence est un sujet im-
portant puisqu’il n’y a pas de méthodes de vérification faciles à suivre. Un
grand avantage de la technique présentée est la transparence du processus de
vérification. Cependant, un des problèmes restants est le passage à l’échelle.
Pour des grand modèles, le nombre d’états à vérifier devient difficilement mani-
able. Des implémentations de protocoles complexes deviennent donc difficile ou
impossible à vérifier. Un autre problème est le fait que les modèles formels pour
les protocoles ne sont pas très intuitifs à écrire et donc des efforts substantiels
doivent être investis pour modéliser correctement l’implémentation d’un proto-
cole spécifique. Le travail effectué actuellement à Virginia Tech répond à ce sujet
en ajoutant un environnement de vérification fonctionnel. Modéliser les proto-
coles par l’intermédiaire d’un langage fonctionnel est beaucoup plus simple que
de construire un modèle formel en Promela. De plus, les programmes fonction-
nels passent à l’échelle beaucoup plus facilement donc même des implémentations
complexes ne poseraient pas de problèmes au niveau du temps de vérification ou
d’utilisation de la mémoire. Les langages fonctionnels évidemment ne permettent
pas la vérification formelle, donc une prochaine étape pourrait être de mélanger
les deux approches. Ainsi, la vue au niveau système des protocoles pourrait être
modélisée dans un environnement fonctionnel de façon efficace en même temps
que les fonctionnalités noyau des protocoles pourraient toujours être modélisées
en un langage formel. Ceci pourrait être fait de façon à ce que la combinaison
des deux assure les fonctionnalités noyau des protocoles et les fonctions de haut
niveau.

Second Part

English Abstract

37

Introduction

In today’s industry, several trends can be observed. Increasing globalization is
leading to the fact that it is uncommon that a product is both developed and
produced in one place. Teams spanning over different laboratories and countries
working together on one product, such as the Airbus A380, are becoming the
rule rather than the exception. Another trend is the miniaturization of silicon
transistors that makes us able to integrate hundreds of millions of them on a
single chip - 267 millions for example for the Power5 processor of IBM in 2004.
The Semiconductor Industry Association (SIA) is predicting that by 2020 the
number of transistors on a single high performance chip will be exceeding 22
billions [Ass06] (Figure 4.5). The size and therefore the complexity of systems is
growing exponentially [Nai02] but competition and consumer demand is asking
for shorter time to market. Projects that took 24 months in 1994 had to be
accomplished within only 12 months in 2004 [LW98, SR98], putting enormous
pressure on development teams.

While observing these developments, one may ask how companies will be able
to deal with these challenges. How can groups that are more and more dispersed
develop increasingly complex products in an ever diminishing time frame?

One possibility is the degradation of product quality. Indeed, many electronic
products we can buy today, especially in the leading edge lines, are not working
like they are supposed to. Often products need manufacturer upgrades after
purchase for correcting bugs or adding functionality that could not be integrated
in time. This phenomenon is very common for mobile phones and DVD writers,
but is also true for other products such as cars. It is getting obvious even to the
end consumer that we are not able to handle the complexity of today’s systems
any more.

In order to work against this trend, designer productivity has to be increased
drastically. This can be done by (i) modeling at a higher level of abstraction, (ii)
the reuse of components, (iii) using formal methods in the design process, and
(iv) using more advanced tools that properly integrate one or more of the above
in existing design flows.

The great majority of electronic circuits is still developed at a low level of
abstraction, the Register Transfer Level (RTL). A couple of years from now, this

39

40

2003 2005 2007 2009 2011 2013 2015 2017 2019
0

2

4

6

8

10

12

14

16

18

20

22

24

year

bi
lli

on
s

of
 tr

an
si

st
or

s
pe

r
ch

ip
 (

31
0

m
m

2)

Figure 4.5: Number of transistors on a single chip predicted by the SIA in 2005

will not be a practical approach because the systems will be too complex to
develop at the RTL. Therefore we eventually will have to move to higher levels
of abstraction such as Transaction Level Design (TLD) or System Level Design
(SLD) in order to describe the same amount of functionality with less code. The
main problem in increasing the level of abstraction is that we lose tight control
over implementation details and therefore key parameters such as performance,
chip size and power consumption can be suboptimal. Thus, the challenge to
move to higher levels of abstraction while still keeping sufficient control over the
refinement process.

Another possibility to increase productivity, is to reuse the components that
have proved their correctness in previous designs or to buy them directly from
third party Intellectual Property (IP) vendors. The difficulty here is to find a
proper format for the exchange of design information that facilitates the reuse
for many different design projects. The IP description has to be available at
a sufficiently high level of abstraction in order to enable an efficient high level
simulation with its environment. At the same time, it has to be in sufficient detail
in order to allow the transition to the physical chip description without too many
problems. However, ideally it should remain independent of the physical design
process. This would allow for (i) efficient simulation, (ii) fast synthesis, and (iii)
reuse in different manufacturing technologies. To satisfy all of these requirements
is a big challenge. Moreover, for successful integration, the existence of a detailed
description of the internal functionality and the behavior of the interface is also

41

important in order to model the environment accordingly. However, IP vendors
are not keen about disclosing technical details about their implementations as
they do not want to give out their technological know-how. This is in stark
contrast to the needs of the IP integration companies.

Any error that occurs during the process of system design increases costs.
However, it is more expensive to correct an error late in the design process than
if it is corrected earlier. Due to this fact, it is important to ensure a maximum
quality of the design construction process. The simulation of a specification or
a model reveals only a small fraction of design errors depending on the type
and amount of test vectors fed into the system. Formal methods [Win90] offer
more advanced possibilities to drastically reduce design errors. Basically they do
exhaustive analysis of properties on a mathematical model of the system. There
exist a plethora of different formal methods, and a particular formal method may
be more or less adapted to the application in a specific step of the design flow.
Also formal methods still have the reputation - and sometimes rightly so - to
be too complicated to use, too slow, resource hungry, and not adapted to real
application needs [Hal90, BH95a, BH95b].

Finally, yet another way to make this sorely needed leap in designer produc-
tivity is the conception and use of advanced tools. A design tool suite has to be
able to follow the system creation starting from the verbal specification up to the
transistor level implementation, and that too without a rupture in the seman-
tics. Ideally, a behavioral system level design description should be automatically
transformed into an RTL level description. This is already being done in some
cases, however, it is not and will not be possible for optimized generic systems.
More promising is a solution where the tool is taking care of all trivial and well
understood transformations and the user is steering the refinement process by
few critical design decisions and parameters. Such tools should also provide func-
tionality to assist in the integration of IP’s from a library of predefined blocks
in order to replace modules with behavioral description by implementation level
module descriptions. The challenge in the creation of future embedded systems
can be solved by providing techniques that independently improve and speed up
different aspects of the design flow and by then creating tools that are able to
integrate these techniques coherently, in order to form a uniform design flow with-
out semantic rupture. These tools have to find the balance between automating
a maximum number of tasks and the developer’s uncontested control over the
implementation result.

42

Main Contributions

To represent the behavior of a program by a type or a proposition, we use the iSTS
algebra proposed in [TG04] and inspired from Pnueli’s synchronous transition
systems [PSS98]. We define a formal syntax of the SystemC core statements and
use it to describe a methodology and a behavioral module system to infer formal
behavioral types from SystemC modules. We then show how to express these
behavioral types in Polychrony (Chapter 9).

The case study on the FIR filter in Chapter sc:implgcc puts this theory to
practice, validates it and illustrates how exactly such a type extraction can work.
The tools needed for this process (such as the tree-ssa functionality of the GCC)
are identified and put to work.

The modular type system defined does not support the handling of structural
information. In the perspective to be able to treat systems with multiple mod-
ules all while preserving the structural information, a SystemC parser/analyzer
is conceived and implemented as a prototype that is able to extract the struc-
tural information of SystemC system descriptions and keep it in an internal data
structure as well as in XML form (Chapter 13). From this internal structure a
SIGNAL skeleton code can be generated, representing the original structure of
the SystemC code. We establish a methodology that integrates the modular Sys-
temC behavioral type generation with the extraction of structural information
that is able to provide formal type descriptions to general SystemC models. In
order to put this methodology to work and to treat large scale models, the mod-
ular SystemC type extraction has to be completely automated, which is what we
are currently working on [KTBB06].

The usefulness of this structural information for other applications is demon-
strated with a visualization example and an automated test generation frame-
work. SystemCXML has been published as an open source project and is hosted
at SourceForge [BMPS04].

In joint work with Syed Suhaib, a methodology is established to incrementally
build formal models with agile methods borrowed found in extreme programming.
Its aim is to lower the difficulty of building formal models from spoken language
requirement specifications and to create formal models that are correct by con-
struction (Chapter 14). In contrast to the behavioral type approach, this work
shows how formal methods can be used early in the design flow, aiming for a
higher design quality.

The limits of synchronous communication of large systems can be extended
by using latency insensitive protocols (LIP). Chapter 15 shows how to to formally
verify the correctness of LIP and propose a modified LIP concept that eliminates
the need for relay stations without compromising on performance.

Chapter 5

Embedded System CoDesign
Flow

The objective of a codesign flow is to describe an embedded system at a functional
level, independent of what parts will be implemented as hardware or software.
Given this specification and certain objectives such as performance, size, costs,
power consumption, weight, and memory demands, the codesign flow guides the
design from the specification to an implementation with a hardware-software
partitioning that satisfies these constraints.

In the large world of embedded systems, there are various different design
methodologies. Differences in these designs may arise because of the complexity
of the systems that are handled, the size of the company, the funding of the
projects, the background of the developing engineers, and historical reasons of
the company. In this chapter, we try to give some essential aspects for the
joint development of hardware/software systems, that are representative of the
different design methodologies.

5.1 The Basic Design Flow

A typical codesign flow - just as most chip design methodologies - can be de-
composed into three basic phases: specification, implementation, and synthesis.
In this chapter we first describe these three basic sections and their peculiarities
with respect to codesign before making some finer grain distinctions later on.

5.1.1 Specification

Specification consists in capturing the behavioral functionality of a system into
a computer readable language and arguably is the first phase in system design.
While from a designers point of view it would be the starting point of a design

43

44 Embedded System CoDesign Flow

Synthesis

Textual specification

Chip

Implementation

Modeling

Firmware +
 Programs

Software
(C-code)

Hardware
(RTL)

System Level Model

Figure 5.1: Simple codesign flow

flow, there is in fact a lot of work to be done before. Before being able to write
down the specification of a system, it is advised to spend some time to pin down
the exact requirements. The requirements are a set of constraints, key functional
elements or tasks that the final product has to be able to perform. In starting, the
requirements are usually expressed in a natural language form such as English,
and may later be refined or formalized. When designing a system, it is important
to have a clear notion of what the system will look like in the end, what it will
contain and what not, and how it will be used. While for small systems a bright
person may be able to do all this analysis without expressing it on paper, it still
usually is a good idea to write it down. However it is imperative to do so for larger
systems where a team is working on a project. Also, the requirements may form
a contract basis, which the design team and the client agree upon. Obviously,
the more clear and specific requirements are, the less likely will be the chances of
expensive misunderstandings.

Typically, the system design flow of embedded systems begins by writing
down requirements for the resulting system. Based on these requirements, a spo-
ken language specification is written that tries to describe as exactly as possible
all essential system behaviors and functionalities. This system specification then
serves as a guideline for writing a system level model in some system description
language such as SpecC [GZD+00], SystemC [GLMS02], or just plain C or C++.
This system level model is supposed to describe the overall functional behavior of

The Basic Design Flow 45

the system, without covering any details about the implementation. It describes
the hardware as well as the software aspects of the design since so far no distinc-
tion has been made between the parts that will eventually be implemented as
hardware and the others that may be implemented as software. This first soft-
ware model of the system can then be used to do system level simulation. This
involves simulation of the entire system behavior by writing a testbench, which
provides the model with input vectors that represent real world system input or
that are likely to thoroughly test as many internal functions and critical behav-
iors as possible. The resulting values on the outputs of the system can then be
compared to what is expected. Based on the system specification and according
to the results, bugs in this system level description can be identified.

5.1.2 Implementation

While the system level model is suitable to verify all functional behavior of the
system under design, its simulation cannot give any pertinent information about
for example performance and timing. This is due to the fact that it is lacking
implementation details such as the choice of processors used, the partitioning of
the system onto the different processors and into hardware and software, and the
internal and external communication protocols used. All the details are intro-
duced in the later steps which usually start off by deciding which parts go into
hardware and which one go into software. For reasonably small models or in old
fashioned design style, the parts that go into hardware are subsequently rewritten
in a hardware description language such as VHDL [VHD] or VERILOG [TM91].
There description are typically written on the Register Transfer Level (RTL),
which can be automatically synthesized into hardware. In more complex designs
there are several steps in between before reaching RTL, some of which we describe
later in this chapter.

An RTL model is a cycle accurate system description, describing the data flow
between registers. It contains all implementation details such as processors used,
bus protocols, and algorithm implementations. RTL describes only the hardware
parts of the system and it can be simulated using a logic simulator. The logic
simulator can determine - given a set of input vectors - the logic states of all signals
at any clock cycle. Although useful for detailed debugging, it is very resource
intensive. For this reason, RTL simulation has only limited abilities to check for
high level functionalities. For example, simulating the boot sequence of a 32 bit
processor alone takes a lot of time, let alone verifying data processing for large
systems Pure RTL level simulation is not possible for long functional sequences of
large systems, however it can be used to verify in detail the functioning of small
parts of the design. Of course, design correctness checking should be performed
extensively at every design stage. However, since the RTL level is the lowest

46 Embedded System CoDesign Flow

element in a chain of traditionally manual operations, the bulk of verification
and testing still occurs that this point of the design flow [SVMS96].

When going from a high level behavioral description to RTL, it is desirable to
do this without semantic rupture. This means that the behavioral model is to be
refined into an implementation model without rewriting it in another formalism,
preserving the behavior and keeping an executable model at all times. Rewriting
a model not only means a high probability of introducing errors, it also makes
it impossible in most cases to refine the model successively and execute it on
different stages of this process. This results in a big break for simulations and
tests, which causes even more inconsistencies. Even though the positive benefits
of a design flow without semantic rupture have been known for a long time, its
implementation and adoption are still in early stages.

For the software part, going from the system level description to the imple-
mentation level is not as time consuming as for the hardware part. Since the
behavior is already described in a software programming language, there needs
to be added only some implementation details, mostly optimizations concerning
the platform used, the communication and the instruction set of the processor.
Simulation of the software part on the implementation level can be done just
as for the system level description. More significant timing and performance
results can be obtained by using a technique called Co-Simulation, where the
RTL logic simulator provides an interface to include software code and simulate
both parts together. As evoked before, the simulation performance may be very
slow except for small system descriptions. For more advanced designs, there are
simulation systems that can interface actual processor boards or FPGA (Field
Programmable Gate Array) implementations of parts of the hardware. This can
result in simulation speed ups of several orders of magnitude.

5.1.3 Synthesis

Figure 5.1 illustrates the different steps and layers of a simple codesign flow. The
last step in the diagram are the transitions from the implementation level or RTL
to the actual chip with its firmware and application programs. These transitions
have been studied extensively and are largely automated for typical designs. The
software side basically just has to be compiled into firmware/bios, operating sys-
tem, and application programs. The hardware part is being transformed from
RTL to a transistor level description (netlist) by a step called logic synthesis.
For each RTL statement, the synthesis program looks for logic functions from a
library of elements, provided by the physical design process of the target tech-
nology. The basic element of the library is the logic gate NAND, and all other
more or less sophisticated logical functions such as multiplexers, exclusive OR
(XOR), adders, and multipliers are inferred from it. If the synthesis target is an

The Modular Approach 47

FPGA , the chip can be programmed directly based on the synthesis result. If the
target is an ASIC (Application Specific Integrated Circuit), all netlist elements
are placed on a virtual chip design and then connected by wires. This process is
called place and route, and delivers a detailed digital floor plan of the chip that
contains layout information about all the layers of the physical chip. This layout
is then sent to the chip foundry that generates lithographic mask layouts for the
actual chip production.

5.2 The Modular Approach

Considering the complexity of the majority of projects, writing models on the
system level is not a viable solution. Too many people would have to work on
the same piece of code, with too many interactions to manage it efficiently. It
is difficult to divide up tasks to several developers when developing one mono-
lithic model. Also testing and debugging is getting all pushed towards the end
where they tend to turn into a nightmare. It is therefore natural to split up the
specification into several parts that represent functional units. Then, we define
communication interfaces between these units in order to be able to build and
test them independently, and thus provide for a more controlled and localized
debugging process. Using hierarchical system specifications, several people or
groups can work on different modules of the same design, without the need to
interact too much - still communication among the different project members is
vital, especially in early design stages, where specifications and requirements are
not completely fixed yet. On composing the separate modules, we then obtain
the final system model, as described in the original specification.

Figure 5.2 shows a codesign flow illustrating the aspect of modular devel-
opment. The major difference is that the system model at any design step is
modular and hierarchical (to simplify, the textual specification is depicted as one
block, but typically has a modular structure as well). In comparison to Figure 5.1
there is an additional design step called architecture exploration like in [GZD+00].
It consists of transformations, guiding a design from system level to a level called
architecture level. The three main steps of architecture exploration are allocation
of processing elements, partitioning, and scheduling. During the allocation phase,
a specific execution architecture is chosen. We decide which general purpose pro-
cessors to use and the types and sizes of the RAM and ROM memory blocks. The
partitioning phase consists in deciding which parts of the system are executed on
which processors - these parts will eventually go into software - and which parts
will be implemented as hardware blocks. Finally, we take the decision about how
to resolve the superfluous parallelism. While the behavioral model is supposed to
expose as much parallelism as possible, much of it is not needed any more after

48 Embedded System CoDesign Flow

Synthesis

Textual Specification

Chip

Implementation

Modeling

A B C

B CA

Firmware +
Programs

ZYW X

Architecture Exploration
Revision

Compilation

Figure 5.2: Modular codesign flow

partitioning since it is decided which parts are executed on which blocks. When
two parallel blocks are mapped onto one single processor, this excess parallelism
has to be resolved. This is done by scheduling the respective blocks in a way
that their execution is obstructing the general execution flow as little as possible.
Also, scheduling has to take into account synchronization points between blocks
and prevent deadlocks in the system.

The revision arrow in the figure points out that the architecture exploration
process is not one definitive step but rather an iterative process. A large part of
the most important design decisions are taken during this phase. The design team
experiments with different scenarios to find out with the help of simulation which
one is the best in terms of the requirements. Obviously, the designer experience
adds a lot to the speed and quality of the architecture exploration process, but
it is very common that a first set of choices does not hit the target to the spot,
and the designer has to go back and try a different solution.

After performing architecture exploration, the system model is at the architec-
ture level. While some modules in this model may have an exact correspondence
in the system level model, most of them will not. This is because the initial
behavioral description does not take into account the partitioning choices but
rather has a modular partitioning reflecting functional blocks. The architecture
level description can now undergo additional simulation and testing, which pro-
vides us with more detailed information and probably exposes more bugs since

To Reuse Means to Accelerate 49

there are many details added. However its simulation also is much slower than
on the system level.

Exhaustive functional simulation on the architectural level may not be prac-
tical any more for large designs, however, the modules can be simulated in detail
separately. Also, it is good practice to perform mixed level simulation, where
critical parts of the system are in architecture level detail, and the other parts
are in system level detail. This enables us to do a full fledged behavioral simu-
lation of the concerned parts while leaving them in their respective environment.
Other methods to assure the correct functioning of the model comprise equiv-
alence checking, where the external behavior of an architecture level model or
parts of it are compared to the corresponding system level model.

The steps that lead from the architecture level to the RTL are combined
here in the implementation step. While at the architectural level some predic-
tions about performance and timing can be done, it is only after choosing the
bus protocols and the implementation of the interfaces that definitive answers
about these can be given. A modular implementation step can be undertaken
module by module, which gives a certain continuity to the design, permits ear-
lier testing, tolerates more parallelism in this refinement process, and therefore
speeds up the overall development time. System wide simulation at RTL level
is very limited or not possible at all. In order to push the limit of design sizes
that still can be verified, there now exist several methods ranging from hard-
ware emulation [GNJ+96], hardware acceleration [CMA02], mixed level simu-
lation [JVBEK91], hardware software co-simulation [GCNCM92, BST92], and
other specialized approaches [YHP+97, Klo05] enabling us to perform a mini-
mum of behavioral testing at RTL.

Overall, modularization adds hierarchical models. Behavior that has a strong
functional link can be isolated and then developed, refined, and tested separately.
This is important in order to distribute work over several individuals or groups.
Also, it helps to overcome the limits of certain tools or resources for testing and
simulation of complex designs. Finally, the hierarchical structure makes it easier
to understand the functionality of the design and therefore increases designer
productivity.

5.3 To Reuse Means to Accelerate

An important potential for speeding up the development process of embedded
systems lies in component reuse. It is a logical consequence of strictly modular
development. Today when we talk about product families and product genera-
tions, we are referring to a whole range of products containing a bulk of identical
modules. These systems differ from each other by few added or modified func-

50 Embedded System CoDesign Flow

tionalities in few modules. While reusing parts seems obvious through evolutions
or specializations of products, it gets more complex with the increasing differ-
ences between the new integration environments and the original environment of
the component. The reuse of blocks of functionality also becomes more difficult
when there is no access to the original developer of a specific IP, who would know
the details and quirks of the implementation and integration.

A

B

C

Textual Specification

Chip

A B C

B CA

Firmware +
Programs

ZYW X

Revision

Figure 5.3: Codesign flow with IP integration

Figure 5.3 shows how the reuse of IP components can be integrated into the
codesign flow. Since the actual development of embedded systems is happening
on several different levels, an IP description should be available in different levels
of abstraction as well. Then, on each level of abstraction, the corresponding
version of the IP can be integrated, and proper functionality can be verified at
all levels. The figure shows how IP A contains a description in the architectural
level as well as another in the implementation or RTL level. This is important
since it enables the designer to do an efficient simulation in the architectural level
to verify the high level functionalities and also gives the possibility to go directly
to logic synthesis for a hardware block or to compile the application for the case
of a software module.

Reusing components nowadays is common practice in the majority of industry
projects. The IPs may stem from the same project or company, from third
party IP vendors or subcontractors, or from community projects for the open
development of free IPs such as OpenCores.org [Cor]. Wherever they originate

To Reuse Means to Accelerate 51

from, any successful IP integration represents more or less of a challenge to design
engineers. Without having been implicated in the development of a component
it is difficult to integrate it properly. The interface protocols of the inputs and
outputs are determined by the implementation details that are too often not
properly documented. The implementation code can help to understand how
to interact with the IP and what to expect from it. But figuring out these
details is hard work, so a pertinent documentation of the interactions of the
component with the exterior is indispensable. It is difficult, however, to provide
a well structured documentation that covers all details, that is up to date, and
that does not leave room for interpretation. So for complex components, even
with a detailed description and well documented code, successful integration of IP
is not obvious. Once the integration seems successful, it still remains to be shown
that the environment adheres to all eventualities of the described interactions.

What makes matters worse, IP vendors tend to keep a maximum of imple-
mentation details for themselves in order to fight against plagiarism and not to
give away the technology. They prefer to offer gray box or black box IPs, that
partly or entirely hide the source code implementation but instead contain only
compiled or synthesized objects. This is an obvious dilemma in the practice of
reusing IPs for embedded systems.

To summarize, the complexity of projects and the growing embedded systems
market need the reuse of system components, and today’s industry largely relies
on it. However, the enormous potential of component reuse for the speed up
of development cycles and the mastery of growing complexity is more and more
limited by the additional effort and costs caused by the problems of integration
and testing of these components. Reducing the complexity of IP integration and
assuring the correctness of component compositions will boost the productivity
of the embedded system design sector. This is especially true when at the same
time IP vendors have the option to hide implementation details without loosing
design correctness.

52 Embedded System CoDesign Flow

Chapter 6

Why use Formal Methods for
CoDesign?

Formal methods are mathematically based techniques for the description of sys-
tem properties in the development of software and hardware systems [Win90,
BH95b]. A method is called formal if it has a sound mathematical basis, usually
in the form of a formal specification language. With formal methods one can
specify, develop, and verify systems in a systematic manner. They allow to check
for properties such as completeness, deadlock, or correctness for all possible sys-
tem states without even having to execute the system or providing specific input
vectors.

There are many different formal methods ranging from state space enumer-
ation and abstract interpretation to deductive methods using theorem proving.
For the codesign of embedded systems, formal methods can be used at different
levels of abstraction and at all stages of the design flow from specification and
design capture to refinement, and synthesis. However, there is still reluctance to
use and adopt these techniques. This is for a large part due to general miscon-
ceptions, also called the classical myths of formal methods [BH95a, Hal90], about
usability, complexity, and the effort to benefit proportion. Another reason for
the slow adoption of formal methods is the lack of methodologies that smoothly
integrate them into existing design flows, while smartly choosing the right formal
method for the right aspect of the design flow.

Certainly, formal methods in codesign do require additional expertise and
thought. However, they bring benefits that cannot be delivered with other meth-
ods and that are indispensable for an ever growing number of systems. Initially
high security applications such as military, avionic, and nuclear were the main
target applications of formal methods, since these kind of projects require a maxi-
mum of reliability and are ready to spend the money and effort. With the growing
complexity of digital systems, however, their use is bound to propagate into all

53

54 Why use Formal Methods for CoDesign?

fields.
In order to understand the different formal techniques used in codesign and

the raison d’etre of the large bandwidth of tools and frameworks that are emerg-
ing, it is important to point out that there are number of different motivations
and reasons to adopt the usage of formal methods in a codesign methodology.
Most motivations ultimately come down to the prevention or detection of errors.
However, it may be worthwhile to take a closer look at some of the different
motivations to use formal methods in embedded systems codesign.

6.1 Assure Completeness of Specification

The initial specification of a system is crucial to the rest of the design process,
since any problem that it contains will be propagated on to lower levels of the
design process. With common tools, it is hard to assure that a specification
is complete. A functionality that is lacking in the specification is likely to be
missing in the implementation too, or, if added later it will cause delays in the
development schedule.

Almost as problematic as missing system functionality is superfluous func-
tionality or implementation details. If the specification contains details about
the implementation, it restricts the free refinement of the system and results in
lower key values (i.e. performance or power consumption) of the implementation.
If it contains unneeded system functionality, in the best case the system will turn
out to be more expensive and take longer to develop, and in the worst case, the
added functionality can conflict with other functions.

6.2 Reduce Specification Errors

Another reason to use formal methods is to try to obtain a specification with as
few errors as possible. In contrast to the previous point, this is not about including
or excluding functionality, it is about the number of bugs in the specification.
No matter how rigorously a system is developed, errors in the specification are
propagated to the lower design levels. The costs for eliminating a bug is increasing
exponentially the further you are in the design process. Therefore, it is important
to have a high quality specification, and from an economical point of view it makes
sense to spend a lot of effort on it in oder to prevent later costs.

High level functional problems are very difficult to detect at lower implemen-
tation levels. So if there are problems of this kind in the specification, they are
much likely not discovered before prototype production or even later. Getting
the specification right is therefore a step that deserves some precious attention,
and formal methods are a powerful tool to do this.

Reduce Errors in Implementation 55

6.3 Reduce Errors in Implementation

That today’s systems contain errors is a widely accepted fact. Many errors do
not have a big importance when they do not affect core functionalities, but still
they might limit the usability of the product or they negatively affect the users
experience. Critical errors however can make a system unusable. Therefore limit-
ing the number of errors in a system implementation is a big concern, and a large
part of system development is dedicated to debugging the final implementation.
While extensive simulation and testing are important, all input vectors represent
only a very limited subset of the possible input scenarios and therefore cover only
a small part of the possible system states. Formal methods cover the entire state
space of a model, and consequently are prone to discover a much larger range
of errors. However, they are not the ultimate answer to all the errors since they
typically work on an abstraction of the system that does not contain all the states
of the actual implementation.

6.4 Speed up Development, Reduce Costs

One of the myths evoked in [Hal90] is that formal methods are expensive to use,
and that it takes a lot of time. Moreover, in the field of embedded systems,
time often corresponds to a lot of money. While the use of formal methods
takes time and costs money, its return on investment can be huge if it only
can help prevent few critical bugs. Using formal methods, typically more time
is spent during the specification phase of the project. However, using a clear
and correct implementation, integration, and testing can be done much faster.
While it is difficult to measure design productivity and quality for different design
methodologies, many companies using formal methods report faster development
time and lower costs compared to more conventional methodologies.

6.5 Improve System Reliability

In the case of a portable multimedia player or a car hi-fi, reliability may not
be the foremost concern for customers. The user accepts some inconvenience in
the use, but too many quirks and too frequent crashes can quickly leave a user
unsatisfied. For cellular phones, reliability is gaining importance as an increasing
number of users experience malfunctioning products and are forced to install
firmware updates themselves or have them done by the vendor. The ever shorter
product cycles imposed by the market will further increase this trend; eventually
we will see updates appearing for devices ranging from the TV set, over the
refrigerator to the coffee machine.

56 Why use Formal Methods for CoDesign?

Even if many bugs can be corrected with firmware updates and these updates
are getting more and more transparent to the user, each of them is causing costs to
the manufacturer and is damaging consumer confidence in the brand. Widespread
use of formal verification for the design of embedded systems may counter this
trend and make it possible for manufacturers to deliver higher quality products
for a reasonable price.

There is another category of systems however where this transition has hap-
pened some time ago. Avionic systems, nuclear energy plants, and drive by wire
systems are examples of products where required reliability and safety levels can-
not be achieved without the use of formal methods. These systems were in the
past the playground for a big part of the formal methods research community,
since even a complex and costly use of formal methods is acceptable here even if
it only would give a slight advantage in reliability and safety.

6.6 Prove the Adherence to Standards

The adherence to standards is very important, especially in the development of
large scale systems and for IP reuse. Being able to formally prove the adherence to
standards such as bus protocols or standard APIs is making large scale integration
much less error prone and favors the reuse of third party IP. If a bus standard
for example is properly formulated and if two components adhere to it, it can be
assumed that they are able to communicate together.

Using formal methods can help to assure that a certain component adheres to
a standard. Again, they are much more efficient for this than simple simulation
and tests. With the help of formal properties it can be mathematically checked
for important functionalities of interfaces and therefore validate the requirements
of a standard.

Chapter 7

Integration of Formal Methods
into the CoDesign Flow

Depending on the needs, the desired results, and taste, there are different pos-
sibilities to integrate formal methods into an existing codesign flow. There are
basically two goals of formal methods: the prevention and the detection of er-
rors. Applying them early in the design process typically has a rather preventive
character, while using them towards the end of the design flow will rather aim
for the detection and elimination of problems. There are very different ways of
how to use formal methods during the design of embedded systems just as there
are very diverse formal methods and different design stages. In order to promote
their adoption in the industry, one has to identify design methodologies that are
able to efficiently integrate certain well chosen formal methods and ease their
application.

In this chapter we present some leads that we followed, which exemplify how
to integrate formal methods in different stages of a codesign flow. These three
approaches are quite different and possibly complementary and they show how
the diversity of formal methods combined with the different design stages result
in a wide field with plenty of opportunities for optimization.

7.1 Automated Transformation into a Formal

Language

Some of the main reproaches made against formal methods concern their com-
plex handling and the fact that they are not adapted to the needs and skills of
engineers[Hal90, BH95a]. These weak points could be eliminated if formal meth-
ods could be transparently used in the background, where the user would not
even notice it. As the reuse of components is a topic of increasing importance,

57

58 Integration of Formal Methods into the CoDesign Flow

we worked on the automatic application of formal methods to detect more prob-
lems in the composition of IP blocks. In order to do this, we generate formal
behavioral interfaces from non formal IP blocks.

The interface of an IP component in a typical design flow does not expose
much information. Often only the input and output signals and their respective
types are visible. Usually the textual documentation for the IP is trying to
make up for this by detailing the necessary communication protocols in order
to assure correct functioning. If more details are needed, the source code of the
model maybe available for closer examination, however it is not easy to obtain
the needed insight from there. Moreover, IP vendors do not like to give away the
source code, they rather provide gray or black boxes of the components in order
to prevent the clients to make adaptations themselves, thereby hindering the flow
of information needed for integration.

Behavioral interfaces can contain much more information than just the names
and types of the input and output signals. They can contain any behavioral detail
of the component such as signal synchronizations and temporal relations between
signals up to representing the complete behavior of the component. In a similar
way that a compiler verifies if the data types of two connected variables are com-
patible, a formal tool can point out errors in the interaction of two components
when they contain formal behavioral interfaces.

In the article [TGB+03], we show how we can transition automatically from a
non formal description to a formal representation. A real-time JAVA description
is automatically translated into the SIGNAL [BLJ91] formalism and then mapped
onto a specific execution architecture. The results show significant performance
gains mainly due to the scheduling optimizations.

In [TBS+04a], we present the theory for an inference system of behavioral
types from non formal components. To capture the formal behavior we use the
language SIGNAL, which is able to describe systems with multiple independent
clocks. This formalism is specifically suited to this task also because it enables the
dependence and synchronization relations quite naturally. On the non formal end
we use here the SystemC design flow, one of the design languages most popular
for system level design.

7.2 Extreme Formal Modeling

This approach is based on the hypothesis that the root of many implementation
errors is actually within the specification. Often specifications are not sufficiently
clear and contain logical errors that go undetected until very late into the de-
velopment process. The costs for errors multiply when detected later in the
development process, so the idea is to build a clear formal specification with as

Validation of Latency Insensitive Protocols 59

few errors as possible in order to avoid later debugging costs, and which can serve
as a golden reference model for later implementation steps.

The intention behind this approach is obvious, however its implementation is
not without problems. The development of formal specifications is quite complex
and not part of the skillset of the average engineer. Building such a formal model
also means to spend more time during specification stage which can mean to reach
a first functional prototype later. The verification of formal specifications can take
a lot of time and resources in terms of memory and processor time. Moreover,
abstractions have to be made for verifications to complete in an acceptable time.

However, once the formal specification is complete and verified, it can be
used as a starting point for a corresponding implementation. Depending on the
chosen languages and environments it may be difficult to obtain a transition
without semantic rupture. But even if there is a semantic rupture, the formal
specification can help to avoid many errors.

For the construction of formal specification models, we propose a different
approach. We use agile methods that have been applied with success in the field
of Extreme Programming (XP) in order to incrementally construct formal models
that are verified from the beginning. The models grow with the number of formal
properties integrated in a correct by construction (CBC) fashion. We think that
using this approach we are able to build correct formal models faster and that
they are better structured, which facilitates the transition to the implementation.

7.3 Validation of Latency Insensitive Protocols

When modeling complex embedded systems with fast system clocks, there is
an upper bound for the wire length with respect to the clock. For large high
performance systems, certain wires in the final chip layout can be longer than
the signal propagation during one clock cycle. Based on optimistic estimations,
a 10 GHz chip in 50 nm technology will contain wires with delays of 10 clock
cycles [BM02]. For such a chip, a strictly synchronous design is not possible any
more. We need to introduce multiple clock domains or desynchronizations. The
field of latency insensitive protocols [CMSV01] is trying to deal with this problem
domain. Several protocols have been presented that - in a more or less automated
way - try to eliminate the consequences of long wires without being forced to make
drastic changes in the original synchronous components. One common problem
of latency insensitive protocols is the proof of correctness of the transformation.
Even though the majority of the approaches claims to be correct by construction,
few of them deliver formal proofs for the behavior preservation. Those that do
it, are mostly incomplete or difficult to follow.

In [SMBS05], we try to verify formally the preservation of behavior between

60 Integration of Formal Methods into the CoDesign Flow

the original synchronous model and the latency insensitive one. This is done on
several different protocols. One of them is our modification of the Carloni im-
plementation that eliminates the need for relay stations at the expense of using
additional wires. This work has been extended mainly at Virginia Tech, USA
with a functional programming framework for latency insensitive protocol vali-
dation [SBM+05].

Third Part

Formal Foundations

61

Chapter 8

Polychrony and SIGNAL

Polychrony is a synchronous framework, and as such its main characteristic is
that it can be used to describe systems that contain components, which function
at different, or even independent clocks. Therefore, the description of a system
does not require an a priori definition of a global master clock as do endochronous
descriptions such as in Lustre [HCRP91]. Instead of requiring the user to define
a global clock, the clock calculus of Polychrony calculates clock trees, that result
from the different clock dependencies expressed in the description. For the gen-
eration of executable code, this description has to be refined to a state where all
clocks can be integrated into a single clock tree. This also mean that the system
is now endochronous.

The polychronous model of computation offers a high level of expressiveness.
It supports the description of non deterministic behavior, as you can find it for
example in the interactions of real-time embedded applications with their environ-
ment. This is an important property for the high level specification of large scale
systems, as it permits the description on a very abstract level, containing very
much independently functioning components that can then be refined into a more
integrated description where all communication and synchronization information
is present. To deal with the apparent heterogeneity of synchrony and asynchrony
in GALS architectures, designers usually consider stratified models, such as CSP
(communicating sequential processes) or Kahn networks (communicating data-
flow functions). By contrast, polychrony (or multi-clocked synchrony) establishes
a continuum from synchrony to asynchrony: modeling, design, transformation,
verification issues are captured within the same model and hence independently
of spatial and temporal considerations implied by a synchronous (local) or im-
posed by an asynchronous (global) viewpoint. It is this flexibility that makes it
so attractive for large scale embedded systems, where all components still func-
tion synchronously, but the complete system cannot be described in an entirely
synchronous manner any more.

63

64 Polychrony and SIGNAL

In this chapter we give a general introduction into the synchronous language
SIGNAL and its associated framework Polychrony. We describe Polychrony with
the help of the iSTS algebra as done in [TG04, LTL03]. iSTS is an easily acces-
sible notation able to capture all of Polychrony. After the definition of the iSTS
notation and the polychronous model of computation in Sections 8.1 and 8.2, we
give a short introduction into the SIGNAL language in Section 8.3, which is the
standard input formalism of Polychrony, and finally give a translation scheme
between iSTS and SIGNAL in Section 8.4.

8.1 An Algebraic Notation

We start with a detailed and informal outline of an algebraic formalism which
we call the iSTS (implicit synchronous transition systems). The key notions put
to work in this notation are essentially borrowed to Pnueli’s STS [PSS98] and
Dijkstra’s guarded command language [Dij76]. In the iSTS, a process consists
of simultaneous propositions that manipulate signals. A signal is an infinite
flow of values that is sampled by a discrete series of instants or reactions. An
event corresponds to the value carried by a signal during a particular reaction or
instant. The main features of the iSTS notation are put together in the example

of Figure 8.1, that describes the behavior of a counter modulo 2, noted P (
def
=

means ”is defined by”), through a set of simultaneous propositions, labeled from
(1) to (3).

P
def
=

¬s0 (1)
|| x̂i ⇒ si+1 = ¬si (2)
|| si ⇒ x̂i+1 (3)

Figure 8.1: Specification of a counter modulo 2

• The proposition (1) is an invariant. It says that the initial value of the
signal s, denoted by s0, is false. This is specified by the proposition ¬s0

(equivalent to s0 = 0).

• The proposition (2) is a guarded command. It says that if the signal x is
present during a given reaction then the value of s is toggled.

– The leftmost part of the sentence, the proposition x̂i, is a condition or
a guard. It denotes the clock of x at the instant i. It is true iff the
signal x is present during the current reaction.

An Algebraic Notation 65

– The rightmost part of the sentence, the proposition si+1 = ¬si, is a
transition. The term si+1 refers to the next value of the signal s. The
proposition si+1 = ¬si says that the next value of s is the negation of
the current value of s.

• The proposition (3) is another guarded command. It says that if si is true
then xi+1 is present.

Notice that, in proposition (3), the guard expects the signal si to hold the
value true but that its action does not actually specify the value of the signal
xi+1, it simply requires it to be present. Proposition (3) is hence an abstrac-
tion: a proposition that partially describes the properties of the system under
consideration without implying a particular implementation.

To implement a function or a system, this proposition needs to be composi-
tionally refined by another, saying which value y should hold when present. To
this end, one may for instance compose the counter P of Figure 8.1 with the
proposition Q:

Q
def
= (xi+1 = xi + 1 || x0 = 0)

Notice that the iteration specified by the proposition Q is not guarded. This
means that it is an invariant which describes the successive values of the signal x
in time but not the particular time samples at which the signal x should occur.
The composition of Q with P has the effect of synchronizing the signal x in Q to
the clock s in P . This composition represents a refinement: the system obeys the
specification denoted by the initial proposition P and is constrained to further
satisfy the additional requirements of Q.

P is an abstraction of P ||Q P ||Q is a refinement of P

The notions introduced so far hold necessary and sufficient ingredients to specify
the behavior of multi-clocked synchronous systems. Pnueli’s original STS nota-
tion features two additional notions which, in retrospect, are essentially geared
towards verification by model-checking.

• One feature is choice P ∨ Q. For instance, the STS a = 1 ∨ b = 1 allows
to non-deterministically have a or b present with the value true at all time.
Non-determinism can equally be modeled using guarded commands and a
partially defined signal s whose scope is lexically restricted to the desired
proposition; In the iSTS, we write:

R
def
= (s⇒ a || ¬s⇒ b)/s

to mean the non-deterministic proposition of choosing a or b upon the value
of an internal signal s, whose calculation is left unspecified. Here, the

66 Polychrony and SIGNAL

notation P/s means that the scope of s is local to the process P . Again,
notice that the proposition R may best be understood as the abstraction of
an executable specification, e.g., one that specifies the actual value of s in
time (for instance, the toggle s of the counting process P).

R is an abstraction of
(
s⇒ a || ¬s⇒ b ||

(
¬s0 || s′ = ¬s

))
/s

• Another feature of the STS is explicit absence ⊥. The proposition x = ⊥
explicitly specifies that x does not hold a value in the context in which it
is considered. For instance, the STS:

(a = 1 ∧ x 6= ⊥) ∨ (x = ⊥ ∧ b = 1)

means that either a is true and x is present or that b is true and x is absent.
In the iSTS, this notion is implicit. It can for instance be specified by a
refinement of R with the invariant ”x is present iff b is true”:

R || b = x̂

In the aim of moving back and forth from abstraction to refinement, one last
essential feature of the iSTS is the notion of scheduling specification. A scheduling
specification is designed to imply an order of execution to otherwise purely logical
propositions. Whereas a transition, e.g. s′ = ¬s, implicitly means that the next
value of s is computed using the present value of s, a proposition, e.g. y = x,
just means that x and y are equal. It does not specify any order of execution.
An order of execution can be imposed to this proposition by its refinement with
a scheduling constraint, noted y → x. Then,

x = y is an abstraction of x = y || y → x

where y → x informally means that ”x cannot happen before y”. This additional
requirement refines the time scale, from one in which x and y happen simultane-
ously, to a more precise one in which one observes that x cannot happen before y.
We will adopt the following syntax, borrowed to the Signal language, and write
x := y for an assignment of y to x:

(x = y || y → x) is an abstraction of x := y

8.1.1 Formal Syntax

The formal syntax of the iSTS is defined by the inductive grammar P in Fig-
ure 8.2. A process P manipulates boolean values noted v ∈ {0, 1} and signals
noted x, y, z. A location l refers to the initial value x0, the present value x and

An Algebraic Notation 67

the next value x′ of a signal. A reference r stands for either a value v or a signal
x.

Clock expressions e, f are propositions on boolean values. When true, a clock
e defines a particular moment in time. The clocks 0 and 1 denote events that
never/always happen. The clock x = r denotes the proposition: ”x is present
and holds the value r”. Particular instances are:

• the clock x̂
def
= (x = x) which means that ”x is present”,

• the clock x
def
= (x = 1) which means that ”x is true”,

• the clock ¬x
def
= (x = 0) which means that ”x is false”.

Clocks are propositions combined using the logical combinators of conjunction
e ∧ f , to mean that both e and f hold, disjunction e ∨ f , to mean that either e
or f holds, and symmetric difference e \ f , to mean that e holds and not f .

A process P consists of the simultaneous composition of elementary proposi-
tions. 1 is the process that does nothing. The proposition l = r means that ”l
holds the value r”. In the introductory example, we wrote x′ = ¬x to mean the

proposition x′ = ¬x
def
= x = 1⇒ x′ = 0 || x = 0⇒ x′ = 1.

The proposition x → l means that ”l cannot happen before x”. The process
e⇒ P is a guarded command. It means: ”if e is present then P holds”. Processes
are combined using synchronous composition P ||Q to denote the simultaneity of
the propositions P and Q. Restricting a signal name x to the lexical scope of a
process P is written P/x.

(reference) r ::= x | v
(location) l ::= x0 |x |x′

(clock) e, f ::= 0 |x = r | e ∧ f | e ∨ f | e \ f | 1
(process) P, Q ::= 1 | l = r |x→ l | e⇒ P | (P ||Q) |P/x

Figure 8.2: Formal syntax of iSTS algebra

8.1.2 Notational Conventions

In the formal presentation of the iSTS, we restrict ourself to a subset of the
elementary propositions in the grammar of Figure 8.2, which we call atoms a:

(atoms) a, b ::= x0 = v | l = y |x→ l s.t. l ::= x |x′

68 Polychrony and SIGNAL

Other propositions as well as additional syntactic shortcuts, used in the examples,
can be defined by using this restricted subset as follows.

l = v
def
= (l = x || x0 = v || x′ = x)/x iff x 6= l 6= x′

l := x
def
= (l = x || x→ l)

x̂ = ŷ
def
= (x̂⇒ ŷ || ŷ ⇒ x̂)

x̂
def
= (x = x)

l
def
= (l = 1)

¬l
def
= (l = 0)

8.2 A Polychronous Model of Computation

After having seen the notation and formal syntax of the iSTS we present now
a short presentation of the polychronous model of computation, the structure of
polychrony and the denotational semantics of the iSTS.

The polychronous model of computation, proposed in [LTL03], consists of a
unique domain of traces, that does not differentiate synchrony from asynchrony,
and semi-lattice structures, that render synchrony and asynchrony using specific
timing equivalence relations.

We consider a partially-ordered set (T ,≤, 0) of tags. A tag t ∈ T denotes
a symbolic instant or a period in time. We note C ∈ C a chain of T . Events,
signals, behaviors and processes are defined starting from tags as follows:

Definition 8.1 (polychrony)
- An event e ∈ E = T × V is the pair of a value and a tag.
- A signal s ∈ S = C → V is a function from a chain to a set of values.
- A behavior b ∈ B is a function from names x ∈ X to signals s ∈ S.
- A process p ∈ P is a set of behaviors that have the same domain.

Figure 8.3 depicts a behavior b in the polychronous domain P .

t1 = t2

{ t1<t3︷ ︸︸ ︷xt1 xt3 xxt2 x x xt4 xx x xt5 }
t4 6≶ t5

Figure 8.3: A behavior in the polychronous model of computation

Tags t1 and t2 are equal, meaning that the events they time are synchronous.
Tag t1 precedes t3, written t1 < t3, to mean the scheduling relation that causally
relates them in time. The signal at the bottom has no tag comparable to either
of the upper two, therefore e.g. t4 6≶ t5. It denotes a signal belonging to a entirely
different clock domain.

A Polychronous Model of Computation 69

Notations. In the remainder, we write tags(s) and tags(b) = ∪x∈vars(b)tags
(b(x)) for the tags of a signal s and of a behavior b, b|X for the projection of a
behavior b on X ⊂ X and b/X = b|vars(b)\X for its complementary, vars(b) and
vars(p) for the domains of b and p.

Synchronous composition. p || q is defined by the union of all behaviors b
(from p) and c (from q) which are synchronous: all signals along the interface
I = vars(p) ∩ vars(q) between p and q carry the same values at the same time
tags.

p || q = {b ∪ c | (b, c) ∈ p× q, I = vars(p) ∩ vars(q), b|I = c|I }

8.2.1 Scheduling Structure of Polychrony

To render the scheduling relations between events occurring at the same time tag
t, we refine the domain of polychrony with scheduling relations. A scheduling
tx → t′y means that the event along the signal named y at t′ may not happen
before x at t.

Figure 8.4 depicts three scheduling relations superimposed to the signals x
and y of Figure 8.3. The scheduling relation tx → ty denotes the observation that
the event occurring along x at t precedes the event along y.

x xt x x
↓ ↓ ↓

y xt x x x x
Figure 8.4: Scheduling relations between simultaneous events

The pair tx of a time tag t and of a signal name x renders the date d of
an event along the signal x at the symbolic time t. The tag t itself represents
the period during which multiple events take place to form a reaction: the tag t
corresponds is the equivalence class of a synchronization relation between dates
d, as in the synchronous structures [NTLG99]. The domain of dates D = T ×X
of a given behavior b is subject to a pre-order relation→b that denotes scheduling
and contains causality <. When no ambiguity is possible on the identity of b in
a scheduling constraint x→b y, we write it x→ y.

∀b ∈ B,∀x ∈ vars(b),∀t, t′ ∈ tags(b(x)), t < t′ ⇒ tx →b t′x
tx →b t′x ⇒ ¬(t′ < t)

8.2.2 Synchronous Structure of Polychrony

In the previous section, we gave a structural definition of a domain of traces
for capturing the possible behavior of processes in the iSTS algebra. Building

70 Polychrony and SIGNAL

upon this domain, we define the semi-lattice structure which relationally denotes
synchronous behaviors in this domain.

The intuition behind this relation is depicted Figure 8.5. It is to consider a
signal as an elastic with ordered marks on it (tags). If the elastic is stretched,
marks remain in the same relative and partial order but have more space (time)
between each other.

The same holds for a set of elastics: a behavior. If elastics are equally
stretched, the order between marks is unchanged. In the Figure 8.5, the time
scale of x and y change but the partial timing and scheduling relations are pre-
served. Stretching is a partial-order relation which defines clock equivalence (def-
inition 8.2).

x : x x x
↓ ↓ ↓

y : x x x x x ≤
x x x
↓ ↓ ↓x x x x x

Figure 8.5: Relating synchronous behaviors by stretching.

Definition 8.2 (clock equivalence)
A behavior c is a stretching of b, written b ≤ c, iff vars(b) = vars(c) and there

exists a bijection f on T which satisfies
∀t, t′ ∈ tags(b), t ≤ f(t) ∧ (t < t′ ⇔ f(t) < f(t′))
∀x, y ∈ vars(b),∀t ∈ tags(b(x)),∀t′ ∈ tags(b(y)), tx →b t′y ⇔ f(t)x →c f(t′)y

∀x ∈ vars(b), tags(c(x)) = f(tags(b(x))) ∧ ∀t ∈ tags(b(x)), b(x)(t) = c(x)(f(t))
b and c are clock-equivalent, written b ∼ c, iff there exists a behavior d s.t. d ≤ b
and d ≤ c.

8.2.3 Denotational Semantics of the iSTS Algebra

The detailed presentation and extension of the polychronous model of compu-
tation allows to give a denotational model to the iSTS notation introduced in
section 8.1. This model consists of relating a proposition P to the set of behav-
iors p it denotes.

Meaning of clocks. Let us start with the denotation of a clock expression e
(Figure 8.6). The meaning [[e]]b of a clock e is defined relatively to a given behavior
b and consists of the set of tags satisfied by the proposition e in the behavior b.

In Figure 8.6, the meaning of the clock x = v (resp. x = y) in b is the set of
tags t ∈ tags(b(x)) (resp. t ∈ tags(b(x))∩ tags(b(y))) such that b(x)(t) = v (resp.

A Polychronous Model of Computation 71

b(x)(t = b(y)(t)). In particular, [[x̂]]b = tags(b(x)). The meaning of a conjunction
e∧ f (resp. disjunction e∨ f and difference e \ f) is the intersection (resp. union
and difference) of the meaning of e and f . Clock 0 has no tags.

[[x = v]]b={t ∈ tags(b(x)) | b(x)(t) = v} [[0]]b = ∅
[[x = y]]b={t ∈ tags(b(x)) ∩ tags(b(y)) | b(x)(t) = b(y)(t)}
[[e ∧ f]]b=[[e]]b ∩ [[f]]b
[[e ∨ f]]b=[[e]]b ∪ [[f]]b
[[e \ f]]b=b[[e]]b \ [[f]]b

[[1]]b=tags(b)

Figure 8.6: Denotational semantics of clock expressions

Meaning of propositions. The denotation of a clock expression by a set of
tags yields the denotational semantics of propositions P , written [[P]], Figure 8.7.
The meaning [[P]]e of a proposition P is defined with respect to a clock expression
e. Where this information is absent, we assume [[P]] = [[P]]1 to mean that P is an
invariant (and is hence independent of a particular clock).

The meaning of an initialization x0 = v , written [[x0 = v]]e, consists of all
behaviors defined on x, written b ∈ B|x such that the initial value of the signal
b(x) equals v. Notice that it is independent from the clock expression e provided
by the context. In Figure 8.7, we write:

- B|X for the set of all behaviors of domain X

- min(C) for the minimum of the chain of tags C

- succt(C) for the immediate successor of t in the chain C

- vars(P) and vars(e) for the set of free signal names of P and e.

The meaning of a proposition x = y at the clock e consists of all behaviors b
defined on vars(e) ∪ {x, y} such that all tags t ∈ [[e]]b at the clock e belong to
b(x) and b(y) and are associated with the same value. A scheduling specification
y → x at the clock e denotes the set of behaviors b defined on vars(e) ∪ {x, y}
which, for all tags t ∈ [[e]]b, requires x to precede y: if t is in b(x) then it is
necessarily in b(y) and satisfies ty →b tx. The propositions x′ = y and y → x′

is interpreted similarly by considering the tag t′ that is the successor of t in the
chain C of x.

The behavior of a guarded command f ⇒ P at the clock e is equal to the
behavior of P at the clock e∧f . The meaning of a restriction P/x consists of the
behaviors c of which a behavior b/x from P are a stretching of. The behavior of
P ||Q consists the synchronous composition of the behaviors of P and Q.

72 Polychrony and SIGNAL

[[x0 = v]]e={b ∈ B|x | b(x)(min(tags(b(x)))) = v}
[[x = y]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,

t ∈ tags(b(x)) ∧ t ∈ tags(b(y)) ∧ b(x)(t) = b(y)(t)}
[[y → x]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,

t ∈ tags(b(x))⇒ t ∈ tags(b(y)) ∧ ty →b tx}
[[x′ = y]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,

t ∈ C = tags(b(x)) ∧ t ∈ tags(b(y)) ∧ b(x)(succt(C)) = b(y)(t)}
[[y → x′]]e={b ∈ B|vars(e)∪{x,y} | ∀t ∈ [[e]]b,

t ∈ C = tags(b(x))⇒ t ∈ tags(b(y)) ∧ ty →b (succt(C))x}

Figure 8.7: Denotational semantics of propositions

[[f ⇒ P]]e = [[P]]e∧f

[[P ||Q]]e = [[P]]e || [[Q]]e

[[P/x]]e = {c ≤ b/x | b ∈ [[P]]e}

Figure 8.8: Denotational semantics of propositions

8.3 The SIGNAL Language

We have now seen the theoretical constructs and bases of Polychrony, but for
simplicity and generality we described it in the iSTS formalism. The Polychrony
workbench, however, is using a different formalism as input notation, namely the
SIGNAL [BLJ91] language. The polychronous model of computation is imple-
mented by the multi-clocked synchronous data-flow notation SIGNAL. It also
serves as the specification formalism used for the case study in Section 12.2. We
therefore give at this point a short introduction to SIGNAL, its basic constructs
and some peculiarities. In Section 8.4 we then show that the SIGNAL formalism
and the iSTS formalism can be used interchangeably and detail how they can be
translated in each direction.

In SIGNAL, a process P consists of the composition of simultaneous equations
x := f(y, z) or x := y f z over input signals y, z and output signals x. A signal
x ∈ X is a possibly infinite flow of values v ∈ V sampled at a clock noted ^x.

P, Q ::= x := y f z | P/x | P ||Q (SIGNAL process)

In the polychronous model of computation, Section 8.2, the denotation of a clock
^x is the domain of the signal associated to x: a chain of tags. We note [[P]] for
the denotation of a process P . The synchronous composition of processes P ||Q
consists of the simultaneous solution of the equations in P and in Q. The process

The SIGNAL Language 73

P/x restricts the signal x to the lexical scope of P .

[[P ||Q]] = [[P]] || [[Q]] and [[P/x]] = [[P]]/x

An equation x := y f z denotes a relation between the input signals y and z and
an output signal x by a combinator f . An equation is usually a ternary and in-
fixed relation noted x := y f z but it can in general be an m+n-ary relation noted
(x1, . . . xm) := f(y1, . . . yn). SIGNAL requires three primitive combinators to per-
form delay x := y$1 init v, sampling x := y when z and merge x = y default z.
The equation x := y$1 init v initially defines the signal x by the value v and
then by the previous value of the signal y. The signal y and its delayed copy
x := y$1 init v are synchronous: they share the same set of tags t1, t2, Ini-
tially, at t1, the signal x takes the declared value v and then, at tag tn, the value
of y at tag tn−1.

y xt1,v1 xt2,v2 xt3,v3 . . .
(x := y$1 init v) x xt1,v xt2,v1 xt3,v2 . . .

The equation x := y default z defines x by y when y is present and by z other-
wise. If y is absent and z present with v1 at t1 then x holds (t1, v1). If y is present
(at t2 or t3) then x holds its value whether z is present (at t2) or not (at t3).

y xt2,v2 xt3,v3 . . .
↓ ↓

(x := y default z) x xt1,v1 xt2,v2 xt3,v3 . . .
↑

z xt1,v1 x . . .

The equation x := y when z defines x by y when z is true (and both y and z are
present); x is present with the value v2 at t2 only if y is present with v2 at t2
and if z is present at t2 with the value true. When this is the case, one needs to
schedule the calculation of y and z before x, as depicted by yt2 → xt2 ← zt2 .

y x xt2,v2 . . .
↓

(x := y when z) x xt2,v2 . . .
↑

z x xt1,0 xt2,1 . . .

8.3.1 Relating Polychronous Signals with Clocks

In Signal, the presence of a value along a signal x is the proposition noted
^x that is true when x is present and that is absent otherwise. The syntax of

74 Polychrony and SIGNAL

clock expressions e and clock relations E is a particular subset of SIGNAL that
is defined by the induction grammar e. The clock expression ^x can be defined

by the Boolean operation x = x (i.e. y := ^x
def
= y := (x = x)). Referring to the

polychronous model of computation, it represents the set of tags at which the
signal holds a value. Clock expressions naturally represent control, the clock [x]
represents the time tags at which the Boolean signal x is present and true (i.e.

y := [x]
def
= y := 1 whenx). The clock [notx] represents the time tags at which

the Boolean signal x is present and false. We write 0 for the empty clock (it has
no tags).

e ::= ^x | [x] | [notx] | e ^+ e′ | e ^- e′ | e ^* e′ | 0

A clock constraint E is a SIGNAL process. The constraint e^= e′ synchronizes
the clocks e and e′. It corresponds to the process (x := (e = e′))/x. Composition
E ||E ′ corresponds to the union of constraints and restriction E/x to the existen-
tial quantification of E by x. A transitive scheduling constraint x → y when e
specifies the order of execution between x and y at the clock e.

E ::= () | e^= e′ | e^<e′ | x→ y when e | E ||E ′ | E/x

Each process P corresponds to a clock constraint E defined by the clock inference
system P : E of Figure 8.9.

x := y$1 init v : ^x^= ^y
x := y when z : ^x^= ^y [z] || y → x when z
x := y default z : ^x^= ^y ^+ ^z || z → x when (^z ^- ^y) || y → x when ^x

P : E Q : E ′

P ||Q : E ||E ′

P : E

P/x : E/x

Figure 8.9: Clock inference system

8.3.2 Code Generation via Hierarchization

The clock constraints E of a process P hold the necessary information to gen-
erate a sequential control-flow graph starting from a multi-clocked synchronous
specification by a technique of hierarchization, proposed in [ABL95]. It can be
outlined by considering a simple SIGNAL program, Figure 8.10. Process buffer
implements two functionalities. One is the process current. It defines a cell in
which values are stored at the input clock ^i and loaded at the output clock ^o.
cell is a predefined SIGNAL operation defined by:

The SIGNAL Language 75

x:=y cell z init v
def= (| m:=x$1 init v

| x:= y default m
| ^x ^= ^y ^+ ^z
|) /m

The other functionality is the process alternate that desynchronizes the
signals i and o by synchronizing them to the true and false values of an alternating
Boolean signal b.

process buffer = (? i ! o)
2 (| alternate (i, o) | o := current (i)

|) where
4 process alternate = (? i, o !)

(| zb := b$1 init true
6 | b := not zb

| o ^= when not b
8 | i ^= when b

|) / b, zb;
10 process current = (? i ! o)

(| zo := i cell ^o init false
12 | o := zo when ^o

|) / zo;

Figure 8.10: Polychronous specification of a buffer

Clock inference (Figure 8.11) applies the clock inference system of Figure 8.9
to the process buffer to determine three synchronization classes. We observe
that b, c b, zb, and zo are synchronous and define the master clock synchro-
nization class of buffer. There are two other synchronization classes, c i and
c o, that correspond to the true and false values of the Boolean flip-flop variable
b, respectively.

This defines three nodes in the control-flow graph of the generated code shown
in Figure 8.12. At the main clock c b, b, and c o are calculated from zb. At the
sub-clock b, the input signal i is read. At the sub-clock c o the output signal
o is written. Finally, zb is determined. Notice that the sequence of instructions
follows the scheduling constraints determined during clock inference.

8.3.3 Some More Concrete Syntax

In addition to the core syntax of SIGNAL presented so far, we make extensive use
of process declarations and partial equations for the purpose of modeling our case
study. In SIGNAL, a partial equation x ::= y f z when e is the partial definition

76 Polychrony and SIGNAL

1 (| c_b ^= b
| b ^= zb

3 | zb ^= zo
| c_i := when b

5 | c_i ^= i
| c_o := when not b

7 | c_o ^= o
| i -> zo when ^i

9 | zb -> b
| zo -> o when ^o

11 |) / zb , zo , c_b , c_o , c_i , b;

Figure 8.11: Clock analysis of the buffer

1 buffer_iterate () {
b = !zb;

3 c_o = !b;
if (b) {

5 if (! r_buffer_i (&i))
return FALSE;

7 }
if (c_o) {

9 o = i;
w_buffer_o(o);

11 }
zb = b;

13 return TRUE;
}

Figure 8.12: Buffer code generation

Translating iSTS into SIGNAL 77

of the variable x by the operation y f z at the clock denoted by the expression e.
The default equation x ::= defaultvalue v defines the value of the variable x
when it is present but no corresponding partial equation x ::= y f z when e applies
(because e is absent). Let x be a variable defined using n partial equations and
a default value v:

x ::= x1 when e1...
|| x ::= xn when en

|| x ::= defaultvalue v

The SIGNAL compiler processes this definition by first checking the clock ex-
pressions e1, . . . en mutually exclusive and then handling the definition as the
equivalent equation: x := (x1 when e1) default . . . (xn when en) default v. The
declaration of a process P of name f , input signals x1..xm, output signals xm+1..xn

is noted process f = (? x1, . . . xm ! xm+1, . . . xn) (|P |);. Once declared, process f
may be called with its actual parameters y1..yn by (ym+1, . . . yn) := f(y1, . . . ym)
and behave as P with x1..xn substituted by y1..yn. A variant declaration is that
of a foreign function f , accessible, e.g. from a separately compiled C library. Its
call can be wrapped into SIGNAL by declaring its interface and by declaring an
abstraction E of its behavior, which consists of scheduling and clock constraints.

process f = (? x1, . . . xm ! x) spec (|E |)
pragmas C CODE”&x = f(&x1, . . . &xm)”
end pragmas;

8.4 Translating iSTS into SIGNAL

In this section we describe how to transform the iSTS notation into SIGNAL
and vice versa. Any SIGNAL equation x := f(y, r) denotes a relation between
the input signals (y, r) and the output signal x by a function or combinator f
(Figure 8.13).

(process) P ::= x := f(y, r) | (P ||Q) | P/x
(combinator) f ∈ {$1 init v | v ∈ V} ∪ {when, default, . . . }

Figure 8.13: Signal syntax core

Signal has three primitive operators: the equation x := y$1 init v initially
defines x by v and then by the previous value of y in time, the equation x :=
y when z defines x by y when z is true and the equation x := y default z defines x by
y when y is present and by z otherwise. The synchronous composition P ||Q of two
processes P and Q consists of the simultaneous solution of the system of equations

78 Polychrony and SIGNAL

ddx := y when zee= (z ⇒ x := y)
ddx := y default zee= (ŷ ⇒ x := y) || (ẑ \ ŷ ⇒ x := z)
ddx := y$1 init vee= (x0 = v || x′ := y)

ddP ||Qee= ddP ee || ddQee
ddP/xee= ddP ee/x

Figure 8.14: From Signal to iSTS ddP ee

P and Q. Figure 8.14 associates Signal equations with the iSTS notation, showing
their close relationship within the polychronous model of computation.

bbx0 = vcc= x := x′$1 init v
bbl := rcce = l ::= r when bbecc
bbx→ lcce = x→ l when bbecc
bbP ||Qcce = bbP cce || bbQcce
bbe⇒ P ccf = bbP cce∧f

bbP/xcce = bbP cce/x
bbvcc= v
bbx̂cc=ˆx

bbl = rcc= l = r
bbe ∧ fcc= bbecc when bbfcc
bbe ∨ fcc= bbecc default bbfcc
bbe \ fcc= not bbfcc default bbecc

Figure 8.15: From iSTS to Signal bbP cc

Figure 8.15 shows the other side of the transformation between Signal and
the iSTS. It defines an encoding of propositions by using partial equations x ::=
y when z, an additional feature of the Polychrony workbench, whose meaning
match that of propositions z ⇒ x := y. The iSTS supports therefore a direct
translation into the data-flow notation Signal of the Polychrony workbench which
we will use in the following chapters.

Chapter 9

Behavioral Types for SystemC

Type systems have led to important improvements in software development, pro-
ductivity, and design quality. In component based design, types are used to
detect mismatches in component interfaces and makes sure that components are
compatible. Interface mismatches however can happen at different levels. One
level is the data type. When component A is expecting an integer at a certain
input signal, but the connected component B is sending a string, the data types
of the signals do not match and in consequence the system will most probably
not work as expected. Most general purpose languages implement data types
and can check for such type mismatches at compile time. Another level where
interface mismatches can occur is for example the temporal level. If component
A is expecting input values at a certain rate, but component B is producing
values and sending them to A twice as fast, the system will again not work as
foreseen, however conventional data type checks will not find a problem in the
component compatibility. There are many more levels of mismatches in compo-
nent compositions that can occur, such as the value range of signals, the clocks,
or the synchronizations of signals and even more complex component interaction
patterns. For all of these possible interaction problems, we can describe types
and type systems that check if they are respected. In general these advanced
types can be summarized under the term behavioral types, as they describe not
only the data types on component interfaces but to a certain extent the behavior
of the component interactions.

With the tools from the previous chapter we are now equipped with the re-
quired mathematical framework and formal methodology to address the modeling
of GALS architectures described using SystemC. In the following we present a
model that is described in terms of a type inference system and extended to the
structuring elements of SystemC. The bases of this module system have been
developed in [TBS+04a], [TG04], and [TBS+04b]. The framework allows to
give a behavioral signature of system components to compositionally check their

79

80 Behavioral Types for SystemC

correct composition when building a desired architecture. It also optimizes the
described software elements by, first, extracting the formal model from the func-
tional architecture description and, second, using the model to regenerate an
optimized software, matching the requirements of the execution architecture. As
a by-product, associating types with SystemC programs provide a formal denota-
tional semantics implied by the interpretation of types in the polychronous model
of computation.

9.1 Example and Overview

To allow for an easier grasp on the proposed behavioral type inference technique,
we outline the analysis of a small fragment of a SystemC program, Figure 9.1, the
construction of its dynamic behavioral type, Figure 9.2, and the inference of its
static abstraction, Figure 9.3. Then we elaborate the notion of proof obligations
synthesis by giving a brief outline of the design correctness issues which can be
modeled and checked in the framework of our type system.

9.1.1 Static Single Assignment

Figure 9.1 (left) depicts a simple C code fragment consisting of an iterative pro-
gram that counts the number of bits set to one in the variable idata. While idata
is not equal to zero, it adds its right-most bit to an output count variable ocnt
and shifts it right in order to process the next bit. In the static single-assignment
(SSA) representation of the program Figure 9.1 (right), all variables (idata and
ocnt) are read and written at most once per cycle. Each time a variable is assigned
a new value, SSA is changing its name, this is to make sure that a variable is only
assigned once. In the example in Figure 9.1 we rename the variables that are
used multiple time by adding an underscore and a number, for example idata_1

to the end of the variable name.
Label L2 is the entry point of the SSA block that represents the while loop.

The first instruction is a φ-node. In a φ-node, several execution strings are
merged together into one. In this case, the value of idata may come from the
block L1, or from the block L3. The φ-node assigns to the new variable idata_3

the value of the variable that corresponds to the preceding execution string. This
is idata_1 for the first execution, and idata_2 for all succeeding executions. The
same happens for the ocnt variable, that also has two possible sources. In the
third line of block L2, we store the result of the loop condition into the temporary
variable cond. This is needed as SSA only has three address instructions that read
two operands at a time and write a third. The last line of block L2 then checks
the condition for the loop. If it is true, control passes to block L3, otherwise it
goes on to the following block in the code.

Example and Overview 81

(C source)

while (idata != 0)
{

ocnt= ocnt + (idata &1);
idata= idata >> 1;

}

(SSA code)

L1: ...
goto L2

L3: tmp = idata_3 & 1;
ocnt_2 = ocnt_3 + tmp;
idata_2 = idata_3 >> 1;

L2: idata_3 = φ(idata_1 ,idata_2);
ocnt_3 = φ(ocnt_1 ,ocnt_2);
cond = (idata_3 != 0);
if cond then goto L3

L4: ...

Figure 9.1: Translation of a source program into static single assignment form

While the block L2 is taking care of the control of the loop, block L3 contains
the actual logic of the loop. It is mostly the same as the C version of the example,
only that a temporary variable is used to store an intermediate result for a code
line with two operators. Also appropriate indices are added to the variables ocnt
and idata in order to comply to the SSA rules and manage the different versions
of the variables. At the end of the execution of L3, control passes implicitly back
to the L2 which is the following block in the code.

9.1.2 Propositional Behavior

Although verbose, the SSA intermediate representation of an imperative program
can present an otherwise arbitrarily obfuscated C program in a form that can be
easily manipulated by an automatic program analyzer. Figure 9.2 shows the
SSA code of our example on the left along with the corresponding behavioral
type on the right hand side. The behavioral type consists of the simultaneous
composition of logical propositions that form a synchronous transition system.
Each proposition is associated with one instruction: it specifies its invariants. In
particular, it tells when the instruction is executed, what it computes, when it
passes control to the next statement, and when it branches to another block. The
extent of a proposition is for the duration of a reaction. A reaction can last for
an arbitrarily long period of time provided that it is finite and that every variable
or register changes its value at most once during this period.

In the first line of block L3 for instance, we associate the SSA instruction
tmp = idata_3 & 1; to the proposition xL3 ⇒ tmp:= idata & 1. In this propo-
sition, the variable xL3 is a boolean that is true if and only if statements of block

82 Behavioral Types for SystemC

(SSA code)

1 L1: ...
goto L2

3

L3: tmp = idata_3 & 1;
5 ocnt_2 = ocnt_3 + tmp;

idata_2 = idata_3 >> 1;
7 goto L2

9 L2: idata_3 = φ(idata_1 ,idata_2);
ocnt_3 = φ(ocnt_1 ,ocnt_2);

11 cond = (idata_3 != 0);
if cond then goto L3

13 else goto L4

15 L4: ...

(behavioral type)

1 xL1 ⇒ ...
xL1 ⇒ x′

L2

3

xL3 ⇒ tmp := idata & 1
5 xL3 ⇒ ocnt’ := ocnt + tmp

xL3 ⇒ idata ’ := idata >> 1
7 xL3 ⇒ x′

L2

9

11 xL2 ⇒ cond := (idata != 0)
xL2 ⇒ cond⇒ x′

L3

13 xL2 ⇒ ¬cond⇒ x′
L4

15 xL4 ⇒ ...

Figure 9.2: Propositional behavior of the SSA program

L3are being executed. So, this proposition says that each time the label L3 is
executed the temporary variable tmp is assigned the value (idata & 1). If L3
is not active, then another proposition may hold. All propositions corresponding
to a statement from the SSA block L3 are conditioned by xL3 meaning that they
hold when L3is being executed. Another characteristic of this behavioral type is
that all propositions of one block can be evaluated in parallel.

In order to avoid collisions, time is advanced between the blocks. xL3 ⇒ x′L2

means that xL2 will be activated in the reaction following the activation of block
xL3. In the behavioral type we can assign a variable multiple times in the program,
as long as it is assigned only once during each reaction. This removes the need for
the renaming of the variables. The exclusiveness in time of the reactions makes
sure that there is no conflict. As all propositions are evaluated in parallel, the
passing of one block to another has to be explicited. While in Figure 9.1 control
passes implicitly from block L3 to block L2 and from block L2 to L4, in Figure 9.2
these transitions are noted as they have to be specified for the behavioral type.
Branches of control in the propositional behavior are implemented with the help of
conditions. Block xL2 represents a simple conditional branch. First the condition
is evaluated in line 11, then, if this condition is true block xL3 is activated in
line 12, otherwise the execution continues in block xL4 as specified in line 13. As
there is no variable renaming, there is also no need for the φ statements from the
SSA.

Example and Overview 83

9.1.3 Static Abstraction

We have seen that every instruction of an SSA program could be associated with
a proposition to render its control-flow and data-flow behaviors. This representa-
tion provides a formal and expressive way to model, analyze, optimize, and verify
the behavior of ordinary programs for example in C/C++.

To ease both optimization and verification of such programs based on that
representation, we abstract it over its control flow, characterized by boolean re-
lations between clocks, and its data flow, characterized by scheduling relations
between signals.

Let us first recall some terminology. A clock x̂ is associated with a signal x.
The signal x corresponds to the flow of the successive values of a variable, sampled
by the discrete periods of time that we call reactions. The clock of x̂ denotes that
set of periods or instants.

In Figure 9.3, all operations on integers and bits reported in the behavioral
type on the left hand side of the figure have been abstracted by boolean relations
between clocks in the middle column of the figure, and by scheduling relations on
the right hand side. This is in fact sufficient information to reconstruct the entire
control and data flow graphs of the program. All the abstracted information
essentially consists of computations which can be used to decorate the control
and data flow graphs and regenerate the original program.

For instance, the instruction xL3 ⇒ tmp := idata&1 is abstracted by the
type xL3 ⇒ ˆtmp = ˆidata. It means: “when the block L3 is executed, tmp is
present iff idata is present”. The scheduling constraints give an indication on the
dependencies of the variables. In line 6 cond is assigned a new value that is used
in lines 7 and 8. The scheduling abstraction will reflect this, by noting in line 6
xL2 ⇒ idata → cond, meaning that the value of cond depends on the value of
idata, and in line 7 and 8 of the scheduling it is expressed that the values of x′L3

and x′L4 depend on the value of cond, and therefore these instructions have to be
scheduled later.

The type associated with the whole loop example uses the clocks denoted by
the booleans xL1, xL2, xL3, and xL4. Each clock denotes a branch in the control-
flow graph of the program. The other clocks, e.g. ˆocnt, denote the presence of
data. They are partially related to the ”label” clocks such as xL2. This means
that each label clock is a superset of all the instants that occur in the variables
of this block.

9.1.4 Typed Modules

Chapter 10 develops the use of the dynamic or static information provided by
the behavioral type inference system to perform design correctness checks. The

84 Behavioral Types for SystemC

(behavioral type)

1 xL3 ⇒tmp:= idata & 1
xL3 ⇒ocnt’:= ocnt+tmp

3 xL3 ⇒idata ’:= idata >>1
xL3 ⇒ x′

L2

5

xL2 ⇒cond:= idata !=0
7 xL2 ⇒cond⇒ x′

L3

xL2 ⇒ ¬cond⇒ x′
L4

(static type)

xL3 ⇒ ˆtmp = ˆidata
2 xL3 ⇒ ˆocnt = ˆtmp

4 xL3 ⇒ x′
L2

6 xL2 ⇒ ˆcond = ˆidata
xL2 ⇒cond⇒ x′

L3

8 xL2 ⇒ ¬cond⇒ x′
L4

(scheduling)

xL3 ⇒idata → tmp
2 xL3 ⇒ocnt→ocnt’←tmp

4 xL3 ⇒ocnt→ x′
L2

6 xL2 ⇒idata→cond
xL2 ⇒cond→ x′

L3

8 xL2 ⇒cond→ x′
L4

Figure 9.3: Static abstraction of the behavioral type

most salient feature of the behavioral type system is yet the capability to reduce
compositional design correctness verification to the validation of synthesized proof
obligations. It is presented in the context of the inference system proposed for
the SystemC module system, Section 9.4.

As an example, consider a class whose virtual fields are two clocks x and y,
and a procedure f . It defines an interface, named m0, which may be used to type
another class. Next, assume an explicit behavioral type declaration #TYPE(f, Q)
which associates the procedure f with a description of its behavior: the proposi-
tion Q. Its aim is to associate the virtual class field f , a method, to the denotation
of all possible implementations satisfying an expected functionality.

class m0 {
virtual sc clock x;
virtual sc clock y;
virtual void f() {} #TYPE(f, Q)
};

Next, we associate the interface m0 with the class parameter m1 of a template
class m2. The interface m0 now gives a behavioral type to the method f in
the class parameter m1 expected by the module m2. Indeed, the template class
m2 uses the class parameter m1, that implements m0, to launch a thread m1.f
sensitive to x. The behavioral type Q, which gives an assumption on the behavior
of m1.f , is required to provide a guarantee on the behavior of the module m2,
produced by the template class.

template 〈class m1〉#TYPE(m1, m0)
SC MODULE(m2) {SC CTOR(m2) {

SC THREAD(m1.f) sensitive� x
}
};

Formal Syntax of the SystemC Core 85

9.1.5 Proof Obligations

Let m3 be a candidate parameter for the template class m2. It structurally
implements the interface m0, because it provides the clocks x and y and defines
the method f by the program pgm. Using the type inference technique previously
outlined, the program pgm is associated with a proposition P that describes its
behavioral type, and the class m3 be decorated with the corresponding type
declaration #TYPE(f, P).

class m3 {
sc clock x; sc clock y;
void f() { pgm} #TYPE(f, P)
};

Then, let m4 be the class defined by the instantiation of the template m2 with the
actual parameter m3. To check the compatibility of the actual parameter m3 with
the formal parameter m0, we need to establish the containment of the behaviors
denoted by the proposition P (the behavioral type of the actual parameter) in
the denotation of the proposition Q, the type abstraction declared in m0.

m2〈m3〉m4 is type-safe iff |= P ⇒ Q

This amounts to checking that P implies Q. This proof obligation can either be
implemented using model checking (if P and Q are dynamic interfaces) or using
SAT checking, if Q is a static interface, by calculating the static abstraction P̂ of
P and by verifying that P̂ implies Q̂.

9.2 Formal Syntax of the SystemC Core

We start with the definition of the core of the SystemC syntax relevant to the
present study. A system sys consists of the composition of classes and mod-
ules (Figure 9.4). A class declaration class m {decl} associates a class name m
with a sequence of fields decl . It is optionally parameterized by a class with
template 〈class m1〉. To enforce a strong typing policy, we annotate the class pa-
rameter m1 with #TYPE(m1, m2) to denote the type of m1 with the virtual class
m2. A module SC MODULE(m) is a class that defines an architecture component.
Its constructor SC CTOR(m) {new ; pgm} allocates threads (e.g. SC THREAD(f)) and
executes an initialization program pgm. While modules are sequentially declared
in the program text, they define threads whose execution is concurrent.

Declarations decl associate locations x with native classes or template class
instances m〈m∗〉 (* being the actual parameter of the template class), and proce-
dures with a name f and a definition pgm. For instance, int x defines an integer

86 Behavioral Types for SystemC

variable x while sc signal〈bool〉 x defines a boolean signal x. We assume x to
denote the name of a variable or signal and to be possibly prefixed as m :: x by
the name of the class it belongs to. We assume the relation ≤ to denote SystemC
sub-typing, e.g., bool ≤ num or int ≤ num.

sys ::= [template 〈class m1〉#TYPE(m1, m2)] class m {decl} (class)
| SC MODULE(m) {decl ; SC CTOR(m) {new}} (module)
| sys ; sys (sequence)

decl ::= m〈m∗〉x (field)
| void f() {pgm} (thread)
| decl ; decl (sequence)

new ::= SC THREAD(f) sensitive� x∗ | new ; pgm (constructor)

Figure 9.4: Abstract syntax for SystemC

The formal grammar of SystemC programs, listed in Figure 9.5, is represented
in static single-assignment intermediate form akin to that of the Tree-SSA package
of the GCC project [CFR+91].

(program) pgm ::= L:blk | pgm; pgm

(block) blk ::= stm; blk | rtn
(instruction) stm ::= x = f(x∗) (invoke)

| wait x (lock)
| notify x (unlock)
| if x then (blk | blk else blk) (test)

(return) rtn ::= goto L (goto)
| return (return)
| throw x; (throw)
catch x from L (catch)
to L using L

Figure 9.5: Abstract syntax for SystemC programs in SSA form

SSA provides a language-independent, locally optimized intermediate repre-
sentation (Tree-SSA currently accepts C, C++, Fortran 95, and Java inputs) in
which language-specific syntactic sugar is absent. SSA transforms a given pro-
gramming unit (a function, a method or a thread) into a structure in which all
variables are read and written once and all native operations are represented by
3-address instructions x = f(y, z).

Formal Syntax of the SystemC Core 87

A program pgm consists of a sequence of labeled blocks L:blk . Each block
consists of a label L and of a sequence of statements stm terminated by a return
statement rtn. In the remainder, a block always starts with a label and finishes
with a return statement: stm1; L:stm2 is rewritten as stm1; goto L; L:stm2. A
wait is always placed at the beginning of a block: stm1; wait v; stm2 is rewritten
as stm1; goto L; L:wait v; stm2.

Block instructions consist of native method invocations x = f(x∗), lock mon-
itoring and branches if x then L. Blocks are returned from by either a goto L, a
return or an exception throw x. The declaration catch x from L1 to L2 using L3 that
matches an exception x raised at block L1 activates the exception handler L3 and
continues at block L2.

Example 1 To outline the construction of the intermediate representation of a
SystemC program, let us reconsider the example of Section 9.1 and detail the
method that counts the number of bits set to 1 in a bit-array epc.data. This
time we give an entire SystemC function. It features a lock mechanism. This lock
mechanism notifies the method when it is allowed to execute (for example when
a new relevant data value is available). Once the execution finishes, the method
sends out a notification, signaling to the rest of the program that the output is
available and can be read securely.

void epc::ones () {
2 sc_int <16> idata , ocnt;

while true {
4 wait (epc.lock);

idata = epc.data;
6 ocnt = 0;

while (idata != 0) {
8 ocnt = ocnt + (idata & 1);

idata = idata >> 1;
10 }

epc.cnt = ocnt;
12 notify (epc.lock);

}
14 }

Figure 9.6: Ones-counter method in SystemC

The corresponding SSA code of this method (Figure 9.7) consists of four blocks.
The block labeled L1 waits for the lock epc.lock before initializing the local state
variable idata to the value of the input signal epc.data and ocnt to 0. Then
it passes control to the block L2. Label L2 evaluates the termination condition of

88 Behavioral Types for SystemC

L1: wait(epc.lock);
2 idata_1 = epc.data;

ocnt_1 = 0;
4 goto L2;

6 L3: tmp = (idata_3 & 1);
ocnt_2 = ocnt_3 + tmp;

8 idata_2 = idata_3 >> 1;

10 L2: idata_3 = φ(idata_1 , idata_2);
ocnt_3 = φ(ocnt_1 , ocnt_2);

12 cond = (idata_3 != 0);
if cond then goto L3

14

L4: epc.cnt = ocnt_3;
16 notify(epc.lock);

goto L1;

Figure 9.7: Ones-counter method in SSA

the loop and passes on control accordingly. As there are several possible sources
in the control flow for the variables idata and ocnt, it determines the most
recent value with the help of φ functions (lines 10 and 11). If the termination
condition is not yet satisfied, control goes to block L3, which corresponds to the
actual loop contents that shifts idata right and adds its right-most bit to ocnt.
If the termination condition is satisfied - i.e. all available bits have been counted
- control goes to block L4 where the result is copied to the output signal epc.cnt
and epc.lock is unlocked before passing control back to L1in order to wait for the
next available input vector.

9.3 Inference

The definition of uniform methodologies for the formal design of GALS architec-
tures has been proposed in [LTL03] and [TGS+03]. After having defined a formal
syntax for the SystemC core statements, we are able to infer behavioral types
from SystemC descriptions. This is the important step as once we are able to
infer formal behavioral types from informal descriptions, we can then automate
the process. Once we are able to automatically obtain them, they can be gener-
ated for whole libraries of existing IP components and in the following be used
to ensure safer component compositions.

The type inference function I[[pgm]], Figure 9.8, is defined by induction on the
formal syntax of pgm. To define it, we assume that the finite set Lf of program

Inference 89

labels L defined in a given method f respects the order of appearance in the text:
L1 < L2 means that L1 occurs before L2.

To each block of label L ∈ Lf , the function I[[pgm]] associates an input clock
xL, an immediate clock ximm

L and an output clock xexit
L . The clock xL is true

iff L has been activated in the previous transition (by emitting the event x′L).
The clock ximm

L is set to true to activate the block L immediately. The clock
xexit

L is set to true when the execution of the block labeled L terminates. The
default activation condition of this block is the clock xL ∨ ximm

L (equation (1) of
Figure 9.8). The block L is executed iff the proposition xL∨ximm

L holds, meaning
that the program counter is at L.

For a return instruction or for a block, the type inference function returns a
type P . For a block instruction stm, the type inference function I[[stm]]e1

L = 〈P 〉e2

takes three arguments: an instruction stm, the label L of the block it belongs to,
and an input clock e1. It returns the type P of the instruction and its output
clock e2. The output clock of stm corresponds to the input clock of the instruction
that immediately follows it in the execution sequence of the block.

Figure 9.8 defines the behavioral type inference system. Rules (1 − 2) are
concerned with the iterative decomposition of a program pgm into blocks blk and
with the decomposition of a block into stm and rtn instructions. In rule (2), the
input clock e of the block stm; blk is passed to stm. The output clock e1 of stm
becomes the input clock of blk .

(1) I[[L:blk ; pgm]] =I[[blk]]
xL∨ximm

L
L || I[[pgm]]

(2) I[[stm; blk]]eL=let 〈P 〉e1 = I[[stm]]eL in P || I[[blk]]e1
L

(3) I[[if x then L1]]
e
L=〈GL(L1, e ∧ x)〉e∧¬x

(4) I[[x = f(y∗)]]eL=〈E(f)(xy∗e)〉e

(5) I[[notify x]]eL=〈e⇒ (x′ = ¬x)〉e

(6) I[[wait x]]eL=〈e ∧ (x 6= x′)⇒ ŷ || e \ ŷ ⇒ x′L〉
ŷ

(7) I[[goto L1]]
e
L=(e⇒ xexit

L || GL(L1, e))

(8) I[[return]]eL=(e⇒ (xexit
L || xexit

f))

(9) I[[throw x]]eL=(e⇒ (xexit
L || x̂))

where GL(L1, e)=if SL(L1) then e⇒ ximm
L1

else 〈e⇒ x′L1
〉

E(f)(xyze)=e⇒ (ŷ ∧ ẑ ⇒ (x̂ || y → x || z → x)), ∀fxyze

I[[catch x from L to L1 using L2]]
e
L=GL(L2, x̂ ∧ xexit

L) ||GL2(L1, x
exit
L2

)

Figure 9.8: Type inference rules

90 Behavioral Types for SystemC

The input and output clocks of an instruction may differ. This is the case,
rule (3), for an if x then L1 instruction in a block L. Let e be the input clock of
the instruction. When x is false, then control is passed to the rest of the block,
at the output clock e ∧ ¬x. Otherwise, the control is passed to the block L1, at
the clock e ∧ x.

There are two ways of passing the control from L to L1 at a given clock e.
They are defined by the function GL(L1, e): either immediately, by activating
the immediate clock ximm

L1
, i.e., e ⇒ ximm

L1
; or by a delayed transition to L1 at

e, i.e., e ⇒ x′L1
. This choice is decided by the auxiliary function SL(L1). It

checks whether the block L1 can be executed immediately after the block L.
By definition, SL(L1) holds iff L1 > L (L1 is after L in the control flow) and
D(L1) ∩ D(L) = ∅ (the set of variables defined in L and L1 are disjoint).

Example 2 In Example 1, D(L1) = D(L2) = D(L3) = {ocnt, idata} and
D(L4) = {cnt, lock}. Hence, going from L1 or L2 to L3 and from L3 to L2

requires delayed transitions because they all define ocnt and idata. Conversely,
going from L3 to L4 can be done immediately since L4 does define neither ocnt

nor idata.

Rule (4) is concerned with the typing of native and external method invoca-
tions x = f(y∗). The generic type of f is taken from an environment E(f). It is
given the name of the result x, of the actual parameters y∗ and of the input clock
e to obtain the type of x = f(y∗). On the right, the generic type of 3-address
instructions x = f(y, z) at clock e is given by E(f)(xyze).

The wait-notify protocol (rules (5 − 6)) is modeled using a boolean flip-flop
variable x. The notify method, rule (5), defines the next value of the lock x by
the negation of its current value at the input clock e.

The wait method, rule (6), activates its output clock ŷ iff the value of the lock
x has changed at the input clock e: e ∧ (x 6= x′) ⇒ ŷ. Otherwise, at the clock
e \ ŷ, the control is passed to L by a delayed transition e \ ŷ ⇒ x′L.

Example 3 Consider the wait-notify protocol at the blocks labeled L1 and L4 in
the ones counter (Figure 9.9). The type of the wait instruction defines the output
clock ŷ if L1 receives control at the clock xL1, and if the value of lock has changed
(proposition lock 6= lock′). If so, at the clock ŷ, ocnt and idata are initialized
and the control is passed to the block L3 by GL1(L3, ŷ). Otherwise, at the clock
xL1 \ ŷ, a delayed transition to L1 is scheduled: xL1 \ ŷ ⇒ x′L1.

All return instructions, rules (7−9), define the output clock xexit
L of the current

block L by their input clock e. This is the right place to do that: e defines the
very condition upon which the block actually reaches its return statement.

Inference 91

(SSA code)

1 L1: wait(epc.lock)
...

3 goto L3

5

L4: epc.cnt = ocnt_3;
7 notify(epc.lock);

goto L1;

(type)

xL1 ∧ (lock 6= lock′)⇒ ŷ
2 xL1 \ ŷ ⇒ x′

L1

...
4 ŷ ⇒ x′

L3

6 xL4 ∧ ˆocnt⇒ ˆocnt
xL4 ⇒ lock′ = ¬lock

8 xL4 ⇒ x′
L1

Figure 9.9: Type of the wait-notify protocol

A goto L1 instruction, rule (7), passes control to block L1 unconditionally at
the input clock e by GL(L1, e). A return instruction, rule (8), sets the exit clock
xf to true at clock e to inform the caller that f is terminated.

A throw x statement in block L, rule (9), triggers the exception signal x
at the input clock e by e ⇒ x̂. The matching catch statement, of the form
catch x from L to L1 using L2 passes the control to the handler L2 and then to the
block L1 upon termination of the handler.

This requires, first, to activate L2 from L when x is present, i.e., GL(L2, x̂ ∧
xexit

L), and then to pass control to L1 upon termination of the handler.

9.3.1 Completion of the State Logic

The encoding of Figure 9.8 requires all entry clocks xL, ximm
L and xf to be present

when the f is being executed. Each signal xL holds the value 1 iff the block L
is active during a transition currently being executed. Otherwise, xL is set to
0. This default setting of the entry clocks requires a completion of the next-
state logic by considering, for all L ∈ Lf , the proposition eL ⇒ x′L implied by
the inferred type P = I[[pgm]] and defines the default rule by xf \ eL ⇒ ¬x′L.
Completion is identical for the immediate and exit clocks ximm

L and xexit
L of the

block L.

xf \ eL ⇒ ¬x′L where eL
def
=

∨
(e |P |= e⇒ x′L)

9.3.2 Modular Extension to External Method Calls

The type inference scheme defined for wait, notify, and operations, rules (4− 6)
can be extended to handle externally defined method calls in a modular and
compositional way, depicted in Figure 9.10.

92 Behavioral Types for SystemC

(a) I[[m f(x1..m) raises y{ pgm }]]=λx1..mxf xexit
f yf .

(
I[[pgm]] || xf ⇒ x

min Lf

)
/ Lf

(b) I[[L : x0 = f(x1..m)]]eL=e⇒ (E(f)(x1..mexy) || e \ (ŷ ∨ x̂)⇒ x′L)e∧x̂

(c) I[[return x]]eL=(e⇒ (xexit
L || xexit

f := x))

Figure 9.10: Modular extension of the inference function to separate methods

Consider a method f with formal parameters x1..m (whose data-types are not
displayed) and a result of type m, rule (a). Let y be an exception raised by the
definition pgm of f and escaping from it. The type of f consists of a lambda
abstraction whose arguments are the inputs x1..m, the entry clock xf , the exit
clock xexit

f , the return value yf and the exception y. It is used to parameterize
the proposition P , which corresponds to pgm, with respect to these arguments.

The lambda abstraction is instantiated in place of a method invocation L :
x0 = f(x1..m), rule (b), which needs to be placed at the beginning of a block
(assuming that this block can take several transitions before termination). To
model the method call, one just needs to activate the entry clock xf of the method
at the input clock e.

The output signal x is used to carry the value of the result. Its clock deter-
mines when the method has reached the corresponding return statement (rule
(c)). When the method terminates, the exit clock of the method call is defined
by e ∧ x̂. Otherwise, if the exception y is raised, a corresponding catch state-
ment handles it. If f has not finished at the end of the transition (at the clock
e \ (ŷ ∨ x̂)), a delayed transition to L is performed e \ (ŷ ∨ x̂) ⇒ x′L in order to
resume its execution at the next transition.

9.3.3 Static Interface of SystemC Modules

The construction of a static abstraction from the behavioral type P of a program
is automatic, thanks to its clock inference system. Example 4 illustrates how such
a static type is inferred and what the notations mean.

Example 4 Figure 9.11 shows how such a static interface looks like. For in-
stance, the instruction xL3 ⇒ tmp := idata&1 is abstracted by the type xL3 ⇒

ˆtmp = ˆidata. It means: “when the block L3 is executed, tmp is present iff idata is
present”. The scheduling constraints give an indication on the dependencies of the
variables. In line 6 cond is assigned a new value that is used in lines 7 and 8. The
scheduling abstraction will reflect this, by noting in line 6 xL2 ⇒ idata → cond,
meaning that the value of cond depends on the value of idata, and in line 7 and

A Behavioral Module System 93

8 of the scheduling it is expressed that the values of x′L3 and x′L4 depend on the
value of cond, and therefore these instructions have to be scheduled later.

(behavioral type)

xL3 ⇒tmp:= idata & 1
2 xL3 ⇒ocnt’:= ocnt+tmp

xL3 ⇒idata ’:= idata >>1
4 xL3 ⇒ x′

L2

6 xL2 ⇒cond:= idata !=0
xL2 ⇒cond⇒ x′

L3

8 xL2 ⇒ ¬cond⇒ x′
L4

(static type)

xL3 ⇒ ˆtmp = ˆidata
2 xL3 ⇒ ˆocnt = ˆtmp

4 xL3 ⇒ x′
L2

6 xL2 ⇒ ˆcond = ˆidata
xL2 ⇒cond⇒ x′

L3

8 xL2 ⇒ ¬cond⇒ x′
L4

(scheduling)

xL3 ⇒idata → tmp
2 xL3 ⇒ocnt→ocnt’←tmp

4 xL3 ⇒ocnt→ x′
L2

6 xL2 ⇒idata→cond
xL2 ⇒cond→ x′

L3

8 xL2 ⇒cond→ x′
L4

Figure 9.11: Abstraction of the behavioral type of the while loop by a static
interface

The type associated with the whole loop example uses the clocks denoted by the
booleans xL1, xL2, xL3, and xL4. Each clock denotes a branch in the control-flow
graph of the program. The other clocks, e.g. ˆocnt, denote the presence of data.
They are partially related to the ”label” clocks such as xL2. This means that each
label clock is a superset of all the instants that occur in the variables of this block.

9.4 A Behavioral Module System

We define a module system starting from the behavioral type inference function
of Section 9.3.

(type) T ::= 〈E , P, C〉 | T → T
(context) E ::= [] | E [x : m] | E [f : P] | E [m : T]
(obligation) C ::= 1 |P ⇒ Q | C ∧ C

Figure 9.12: Behavioral types for modules

The type T of a module m, Figure 9.12, consists of an environment E that
associates its methods f and fields x with types, of a type P that denotes the
behavior of its constructor, and of a proof obligation C.

The type T1 → T2 denotes a template class that produces a module of type T2
given a parameter of type T1. A proof obligation is a conjunction of propositions of
the form P ⇒ Q. A proof obligation P ⇒ Q is incurred by the instantiation of a
template class, whose formal parameter has type P , by an actual class parameter,
of type Q.

94 Behavioral Types for SystemC

The type inference function for modules, I[[sys]]E assumes a type environment
E that associates names with types. We write E(x) for the type of the location x
and E(m.x) = F(m)(x) for the path m to x iff E(m) = 〈F , P, C〉.

9.4.1 Type Inference for Declarations

Rule (a) sequentially processes the declarations decl in a module. Class field
declarations contribute to building the type T of a module: rule (b) associates
the location x with the type name m in the class-field [x : m], rule (c) associates
the procedure f with the class-field [f : P]. The type τ denotes a program that
does nothing. It is neutral by composition.

In rule (d), the initialization of a thread SC THREAD(f) sensitive � x in the
constructor is associated with the behavior E(f) of the method f it forks and
with the type x̂f < x̂ >, meaning that x triggers f .

(a) I[[decl1; decl2}]]E=let 〈E1, P1, C1〉 = I[[decl1]]E
in 〈E1, P1, C1〉] I[[decl2]]EE1

(b) I[[m x]]E=〈[x : m], τ, 1〉
(c) I[[void f() {pgm}]]E=〈[f : I[[pgm]]E], τ, 1〉
(d) I[[SC THREAD(f) sensitive� x]]E=〈[], E(f) || (x̂f〈x̂), 1〉

Figure 9.13: Type inference for declarations

9.4.2 Type Inference for Modules

Rule (e) processes a sequence of module declarations sys1; sys2. We write
〈E1, P1, C1〉] 〈E2, P2, C2〉 = 〈E1E2, P1 ||P2, C1 ∧ C2〉 to merge the types of sys1 and
sys2. While processing is sequential, the composition of the behavioral type P1 ||P2

is synchronous.
Rule (f) first obtains the type T1 = 〈E1, P1, C1〉 of its class fields. Then, in the

environment E extended with that of the class fields E1, the body new ; pgm of the
constructor is processed to obtain its type T2. The type of the module becomes
m · (T1] T2). The notation m · 〈E , P, C〉 = 〈[m : E], P, C〉 (resp. m · (T1 → T2) =
T1 → (m · T2)) defines the type of the class m from the type 〈E , P, C〉 of its class
fields.

Rule (g) determines the type of a template class m2 whose formal parameter is
a class m1 that implements the virtual class m. The virtual class m provides the
type, and hence the expected behavior, of the formal parameter name m1. It is
obtained from the environment E by m·T = E(m). The body of the template (i.e.
the field declarations decl of the class m2) is type-checked with the environment

A Behavioral Module System 95

E extended with the association of m1 to the type of the class fields E1 declared
in m. This yields the type m2 ·T2 of the class. The type of the template is defined
by associating m2 with the type (m1 · T1)→ T2 (and hence m1 with the type T1).

Rule (h) performs the instantiation m2〈m〉x of a template class m2 with an
actual parameter m to define the class name x. The type (m1 · T1) → T2 of the
template class m2 and the type m · T of the actual parameter m are obtained
from the supplied environment E . Type matching between T and T1 requires
the resolution of a sub-typing between T1[m2.m/m1] and T2[m2.m/m]. The term
T1[m2.m/m1] stands for the substitution of the name m1 by the concatenation
m2.m in T1. The resolution of the type matching constraints reduces to the
synthesis of the proof obligation C by the algorithm R. If C is satisfied, then the
type of the location x is T2[m2.m/m1].

(e) I[[sys1; sys2]]E=let 〈E1, P1, C1〉 = I[[sys1]]E
in 〈E1, P1, C1〉] I[[sys2]]EE1

(f) I
[[

SC MODULE(m) { decl ;
SC CTOR(m) {new ; pgm}}

]]
E
=let 〈E1, P1, C1〉 = I[[decl]]E

& T2 = I[[new ; pgm]]EE1
in m · (〈E1, P1, C1〉] T2)

(g) I

template 〈class m1〉
#TYPE(m1, m)
class m2 {decl}

E

=let m · T = E(m)

& 〈E1, , 〉 = m1 · T
& T2 = I[[decl]]EE1

in 〈[m2 : (m1 · T1)→ T2], τ, 1〉
(h) I[[m2〈m〉x]]E=let (m1 · T1)→ T2 = E(m2)

& m · T = E(m)
& C = R(T1[m2.m/m1], T [m2.m/m])

in x · (T2[m2.m/m1])] 〈[], τ, C〉)

Figure 9.14: Type inference for modules

9.4.3 Proof Obligation Synthesis

The resolution R(T1, T2) of sub-typing constraints is defined by induction on
the structure of the pair (T1, T2). It reduces to the proof of a conjunction of

96 Behavioral Types for SystemC

propositions of the form P1 ⇒ P2 (of denotation [[P1]] ⊆ [[P2]], see Section 9.5).

R([], [])⇔1

R(E1 → T1, E2 → T2)⇔R(E2, E1) ∧R(T1, T2)
R(E1[x : t1], E2[x : t2])⇔R(E1, E2) ∧ (t2 ≤ t1)
R(E1[f : P1], E2[f : P2])⇔R(E1, E2) ∧ (P2 ⇒ P1)
R(E1[m : T1], E2[m : T2])⇔R(E1, E2) ∧R(T1, T2)
R(〈E1, P1, C1〉, 〈E2, P2, C2〉)⇔R(E1, E2) ∧R(P1, P2) ∧R(C1, C2)

If P2 is static (i.e. P2 ⇔ P̂2) then the problem reduces to checking for satisfaction
of the boolean proposition P̂1 ⇒ P̂2). If P2 is dynamic then the problem reduces
to verifying that P1 ⇒ P2 is an invariant of P , the type of the program, by
using model-checking techniques. Both problems can be expressed and decided
using the Polychrony workbench [IRI], as demonstrated in Appendix 9.5, where
SystemC programs and their behavioral types are embedded in Signal.

9.5 Behavioral Types in Polychrony

The Polychrony workbench [IRI] supports the synchronous multi-clocked data-
flow programming language Signal. As we have defined now a way on how to
define behavioral types starting from SystemC descriptions, in order to be able
to express these behavioral types in Polychrony we just have to define a way
on how to translate the iSTS of the behavioral type system we just defined into
Polychrony.

C[[L:blk ; pgm]]=C[[L:blk]]xL
L || C[[pgm]]

C[[stm; blk]]eL=let 〈P〉e1 = C[[stm]]eL in P || C[[blk]]e1
L

C[[rtn]]eL=T [[I[[rtn]]eL]]
C[[stm]]eL=if (stm 6= ”x = f(x1...n)”))

then let 〈P 〉e1 = I[[stm]]eL in 〈T [[P]]〉e1

else let e = T [[e]] and P = T [[E(f)(xx1...ne)]]

in

〈
spec P

pragmas CPP CODE ”if e { x = f(x1...n) }”
end pragmas

〉e

Figure 9.15: Embedding the intermediate representation in Signal

We recall from Section 8.4 the translation from the iSTS notation into Signal,
Figure 8.15, and the encoding of Signal by behavioral types, Figure 8.14. The
behavioral type system therefore supports a direct translation into the data-flow
notation Signal of the Polychrony workbench [IRI]. This translation allows for

Behavioral Types in Polychrony 97

the complete embedding of SystemC modules into Polychrony, Figure 9.15, to
perform global design transformations, such as hierarchization or distribution and
to perform a correct-by-construction design exploration towards the mapping of
system functionalities onto a target execution architecture.

The translation consists of representing guarded commands e ⇒ (x′ = v)
and e ⇒ x̂ by partial equations x ::= v when e and x̂ ::= when e, of identical
meaning, and of embedding native method invocations x = f(x1...n) in wrappers
(the CPP CODE part) visible from Signal via a behavioral type (the spec part).
Since the previous value of a signal x is noted x$1 in Signal, we assume the default
equation x := x′$1 to define the current value x of a variable (of type bool or int
in SystemC).

Example 5 As an example, embedding the ones counter into Signal consists of
emulating control by partial equations and of wrapping computations using typed
pragma statements (Figure 9.16).

(SSA code)

L1: wait(epc.lock);
2 idata_1 = epc.data;

ocnt_1 = 0;
4 goto L2;

6

L3: tmp = (idata_3 & 1);
8 ocnt_2 = ocnt_3 + tmp;

idata_2 = idata_3 >> 1;
10 goto L2;

12 L2: idata_3= φ(idata_1 ,idata_2);
ocnt_3 = φ(ocnt_1 , ocnt_2);

14 cond = (idata_3 != 0);
if cond then goto L3

16

L4: epc.cnt = ocnt_3;
18 notify(epc.lock);

goto L1;

(SIGNAL type)

1 x1:= (lock 6=lock’) when xL1

x′
L1::= when not x1

3 idata ::= data when x1

ocnt ::= 0 when x1

5 x′
L2::= when x1

7 tmp:= f1(idata) when xL3

ocnt ::= ocnt$1 + tmp when xL3

9 idata ::= f2(idata$1) when xL3

x′
L2::= when xL3

11

cond:= idata != 0 when xL2

13 x′
L3:= when cond

xL4:= when not cond
15

17 cnt::= ocnt when xL4

lock ::= not lock when xL4

19 x′
L1::= when xL3

21 xL1:= x′
L1$1 init true

xL2:= x′
L2$1 init false

23 xL3:= x′
L3$1 init false

xf 1̂ = xf 2̂ = xL1̂ = xL2̂ = xL3̂ = xL4

Figure 9.16: Signal type of the ones counter

98 Behavioral Types for SystemC

This embedding allows to operate global architectural transformations on the
initial program, such as hierarchization or distributed protocol synthesis, using
the Polychrony platform [IRI] or perform both static (SAT-checking) or dynamic
(model-checking) verification of its design properties, whose spectrum is outlined
next.

The SIGNAL code on the right hand side of the figure can be obtained from
the SSA mostly by line to line transformations. Lines 21 to 23 of the SIGNAL
code establish a connection between the next value of the blocks and the current
value. Only xL1 is initialized by true, the others get activated once the execution
advances. The completion of the state-logic is implemented by the aggregation
of partial state equations. Notice that L1, L2, and L3 are always activated by
a delayed transition, whereas L4 is always immediate. These partial equations
can be integrated into complete equations easily. This is done implicitly by the
SIGNAL compiler, but is sometimes useful in order to improve readability. Below
are two examples of how partial equations can be merged into one:

x′
L1 := true when not x1 default xL4 default false

2 x′
L2 := true when x1 default xL3 default false

Native operations have been inlined into the Signal code except the call to
bitwise & operation the method >>. These are defined as external functions f1
and f2 defined by:

function f1 = (? i ! o)
2 spec(| ˆi = ˆo | i → o |)

pragmas C_CODE "o = i & 1" end pragmas;
4

function f2 = (?i !o)
6 spec(| ˆi = ˆo | i → o |)

pragmas C_CODE "o = i >> 1" end pragmas;

Chapter 10

Applications

We have introduced a type system allowing to model the control and data flow
graphs of a given imperative program in SSA intermediate form. It is shown, that
the expressive capability of the type system’s semantics matches that of de-facto
standard design languages such as SystemC and as well as that of related multi-
clock synchronous formalisms (in particular SIGNAL). In order to really take
advantage of such a type system, we need applications that extend its use and
exploit its possible advantages. General applications of behavioral type systems
such as optimization, verification, and encapsulation may be obvious, however
we use this section to highlight details of some example applications. In the
following we talk about the scalability of the approach and about its modularity.
These are essential in treating large scale systems. Then we show how it can be
used for design checking, design exploration, formal verification, and conformance
checking. All of these applications are presented in this chapter briefly in order
to get an idea of the impact of the approach in different areas.

10.1 Scalability

Just as the theory of interface automata [dAH01], types allow to scale the level
of abstraction to be automatically obtained starting from the type inferred from
a SystemC module within the simple formalism of Figure 8.2. Behavioral types
share with interface automata the capability to define static interfaces (boolean
relations) and dynamic interfaces (a transition system). Behavioral types relate
a given proposition P to a more abstract one, Q, in several ways:

• a transition e⇒ x′ = y can be abstracted by a clock relation between e, x̂
and ŷ;

• a bound signal x in P/x can be abstracted by any proposition Q which
contains P and does not reference x;

99

100 Applications

• a free signal x whose clock is not fast (because it appears at a lower level
in the clock hierarchy) can be abstracted by this clock in any Q containing
P .

All these examples are instances of a more generic abstraction pattern. In gen-
eral, checking a user-specified abstraction Q consistent with the type P inferred
from a given program amounts to the satisfaction of the containment relation
[[P̂]] ⊆ [[Q]] (i.e. the denotation of P is contained in the denotation of Q). If P is a
static interface, this amounts to the satisfaction of a boolean equation. Similarly,
checking that a dynamic interface Q is an abstraction of a process P amounts to
verifying that Q simulates P by model-checking.

10.2 Modularity

The main advantage of formulating a behavioral type system for SystemC is
the formal foundation it offers to investigate modular and compositional design
methodologies using separate compilation techniques. For instance, suppose that
the declared type P of a SystemC class template provides sufficient information
about its formal parameters that it can be determined if the body if the class
template is controllable and can be compiled.

One may then provide it with an actual class parameter, of type Q, satisfying
Q ⇒ P , without having the burden of fully instantiating the template code and
recompile its code for that given instance.

Example 6 To exemplify the benefits of behavior type inference for SystemC
modules, let us first consider the dynamic type P of a counter modulo 2. It
generates an output event y upon two occurrences of the signal x. Its state s is
initially false. The signal x triggers the calculation of the next value s′ of s defined
by the negation ¬s of its current value. When s is true then y is triggered.

P
def
=

(
¬s0 || x̂⇒ (s′ = ¬s) || s⇒ ŷ

)
Let Q = (x̂ > ŷ) be the static interface type of P declared for the virtual class
of the introductory example, Section 9.1. It just requires the clock ŷ to be a
sampling of x̂. Let us associate the type P and Q with the procedure f using the

Design Checking 101

#TYPE annotation.

class m0 {
virtual sc clock x;
virtual sc clock y;
virtual void f() {} #TYPE(f, Q) };

template 〈class m1〉#TYPE(m1, m0)
SC MODULE(m2) {SC CTOR(m2) {

SC THREAD(m1.f) sensitive� x
}};

Let us now briefly recall the example of Section 9.1. First, an interface m0,
with virtual class fields x, y, and f is declared with the annotation #TYPE(f, Q).
The template class m2 uses a class parameter m1 that implements m0 to launch a
thread m1.f sensitive to x. The class m3 implements the interface m0 and defines
the method f by the program pgm of type P . Finally, class m4 is defined by the
instantiation of the template m2 with the parameter m3.

class m3 {
sc clock x; sc clock y;
void f() { pgm} #TYPE(f, P) };

m2〈m3〉m4

Checking the guarantees of the actual parameter m3 satisfy the assumptions of
the formal parameter m0 of the template m2 amounts to verifying that P implies
Q. This is done by calculating the static abstraction P̂ = ∃s. (ŝ = x̂ || ŷ = s)) of P
and by checking that it implies x̂ > ŷ.

10.3 Design Checking

The proposed type system allows to easily formulate properties pertaining to
common design errors the analysis of which has been the subject of numerous
related works. Most of these approaches consist of proposing an ad-hoc type sys-
tem for analyzing a specific pattern of design errors: race conditions, deadlocks,
threads termination; and in a given programming language: Java, C, SystemC.
By contrast, our behavioral type system provides a unified framework to per-
form both static verification via satisfaction checking or dynamic verification via
model checking of behavioral properties of embedded systems described using
imperative programming languages. The inference technique itself is language
independent and the semantical peculiarities of language-specific runtime fea-
tures and libraries can be modeled in the polychronous model of computation
and its supportive type system.

102 Applications

Termination. One common design error found in embedded system design is
the unexpected termination of a thread due to, e.g., an uncaught exception.

In our behavioral model of SystemC, the termination of the infinite loop of a
thread f can be represented by the property xexit

f = 1. Unexpected termination
can hence be avoided by model-checking the property that xexit

f = 0 is an invariant
of f :

P |= xexit
f = 0

Deadlocks. Another common design error is a wait statement that does not
match a notification and yields the thread to block. Let xL1...n be the clocks of
the blocks L1...n in which the lock x is notified. Waiting for x at a given label L
eventually terminates if

P |= xL ∧ ¬(∧n
i=1xLi

) = 0

Race conditions. Similarly, concurrent write accesses to a variable x shared
by parallel threads can be checked exclusive by considering the input clocks e1,..n

of all write statements x = f(y, z) by verifying that

P |= (ei ∧ (∨j 6=iej)) = 0, ∀i = 1, ..n

Example 7 For instance, consider checking exclusion between the transitions
of the ones counter. The type P of the counter implies the equations x′L2 =
(ŷ1 ∨ ŷ2) and x′L1 = xL3. Verifying exclusion between them amounts to proving
that (ŷ1 ∨ ŷ2) ∧ xL3 = 0 is an invariant of P . By construction of P , we have:
ŷ1 = xL1 ∧ (lock 6= lock′), ŷ2 = xL2 \ T0 and xL3 = T0. The property follows by
observing that T̂0 = xL2.

10.4 Design Exploration

Just as the multi-clocked synchronous formalism of SIGNAL which it is based
upon, our type system allows for the refinement-based design methodologies con-
sidered in [TGS+03] to be easily implemented.

Checking the correctness of the refinement of an initial SystemC module, of
type P , by its refined version, of type Q, amounts to verifying that the final type
Q satisfies the assumptions made by the initial specification. In the spirit of the
refinement-checking methodology proposed in [TGS+03], this can be implemented
by checking the refinement Q to be finitely flow preserving the initial design P .

In general, Q may differ from P by the insertion of a protocol between two
components of P , by the adaptation of the services provided by P with a new
functionality implemented in Q. Along the way, one may abstract from the type Q

Systematic Formalization of Specification-Level Behavior 103

the signals and state variables introduced during the refinement in order to accel-
erate verification. In most cases, such refinements may be checked incrementally,
by checking the static containment relation between the static abstractions of P
and Q: Q̂⇒ P̂ .

10.5 Systematic Formalization of Specification-

Level Behavior

This approach consists, first, of decomposing the syntactic structure of a program
into an intermediate representation that renders the imperative structure of the
original program together with its most characteristic features (use of locks, in-
terrupts, etc.). In this structure, each thread consists of a sequence of blocks
delimited by wait and notify synchronization statements.

An example implementation of this has been published in [TGB+03]. It con-
sists of a Polychrony plugin that translates multi-threaded real-time JAVA pro-
grams into SIGNAL. The JVM real-time runtime system is modeled using the
ARINC library of SIGNAL [GG02]. This library gives a generic model of real-time
operating systems APIs in SIGNAL. The translator entirely models the behavior
of a multi-threaded real-time JAVA component and reuses and reconfigures its
package of real-time thread classes according to a given target architecture.

Within such blocks, basic control structures are then encoded. A method call
or a basic operation, e.g. x = y + 1 with y declared as int y = n, is encoded by an
equation, e.g. either x = pre n y + 1 when c (when y references a value computed
during the previous transition in this block) or x = y + 1 when c (if it has already
been computed in the same transition), conditioned by an activation clock c. A
conditional statement, e.g. if x then P else Q, is encoded by constraining the clock
of P by x and that of Q by not x. While loops are encoded by over-sampling.
Interrupts are rendered by events. An interrupt conditions the activation clock
of subsequent equations in the control flow graph; if it escapes the scope of the
method in which it is raised, it becomes an output signal of the process that
contains the method in order to function outside of the context of that method.

In the specification-layer of the behavior ones, there is only one critical sec-
tion, delimited by a wait and a notify. It is encoded much like the polychronous
specification of the previous section, with the noticeable addition of the wait-
notify protocol and the simulation scheduling tick. The process is activated when
it obtains the lock on istart. Then, at its own rate (now conditioned by the clock
c), it determines the count. When it is finished, it sends the notification.

104 Applications

10.6 Conformance Checking

Another application domain for the polychronous model is conformance checking.
Conformance consists basically in formally comparing two versions of a model and
deciding if the second model conforms to the description given by the first. This
is specifically useful when performing model refinements and describing systems
at different levels of abstraction. It is important to show that a refinement of
a model still contains all the behavior described in the original model, that is
conforms to the previous description.

In [TGS+03] the theory of refinement checking has been elaborated for exam-
ples in the system level design language SpecC and their SIGNAL equivalents.
The SpecC design process inherently uses several levels of abstraction such as
the specification level, architecture level, communication level, and implementa-
tion level. These different design layers can similarly be found in all ESL design
methodologies. While SpecC and others guarantee a correct by construction re-
finement process, this often is less obvious than they claim. The formalism built
around polychrony permits to make formal checks on the conformance of these
refinements. Several design properties have been identified and formally defined
such as relaxation, flow equivalence, flow invariance, and controllability [TLS+04]
that permit to perform formal conformance checks between refinement steps.

Fourth Part

Using Formal Methods for
Embedded Systems

105

Chapter 11

Introduction

In Chapter 7 we have presented some general ideas on how to integrate formal
methods in a codesign flow. In this chapter we illustrate the details and benefits
of such an integration, and show how much of the complexity of formal methods
can be hidden without losing the gain in design accuracy.

SystemC [OSC] is one of the most popular languages for Electronic System
Level (ESL) design. It has the big advantage that is is based on C++; any
SystemC program can be compiled with a standard C++ compiler such as GCC.
Its syntax is relatively easy to understand and to program for the large base
of available engineers that do know C++ or Java. SystemC is adding some
additional concepts to C++ that are needed for the development of hardware
systems. The main concepts added in SystemC are true concurrency, hierarchical
modules, signals, communication channels, and specific data types. All of this
additional functionality is added with the help of a class library and macros,
so as to not to alter the language itself. This is one big advantage it has over
SpecC [GZD+00], which is based on the C language but where language constructs
have been added, necessitating specific tools for any manipulation of the code.

While the strength of SystemC is its ease of expression and the large available
code base, one major flaw however is the lack of any formal support, which
is the case for most ESL design languages. In order to check if a portion of
SystemC code is doing what it is intended to do, the only tool we can rely on
is simulation. By simulation we mean in this context to compile an executable
binary of the code in question, to execute it with a certain amount of input values,
and finally to check if the output values correspond to the expected result. The
significance of simulation results largely depends on the number and choice of
input vectors. Also systems can be designed to contain test routines that help
to discover problems in the design. However, simulation can never verify correct
functioning of the system for all input values. And as the complexity of models
increase, the percentage of possible input vectors verified decreases exponentially.

107

108 Introduction

Formal methods have the ability to verify the correct behavior of a specific
functionality for all possible states of the system. It would therefore be desirable
to have an ESL design language that is based on a formal semantic, in order to be
able to apply formal correctness checks on the design. The complexity of formal
languages, however, make it very inconvenient to express system behavior and
hence prevent their use by design engineers. We were thus looking into the possi-
bility to translate existing non formal ESL design models into a formal language,
and then verify their functioning using formal methods. This translation process
may be time consuming and error prone when performed by hand. But once the
translation scheme is defined properly it can be automated and deliver a correct
formal model with few additional effort.

As output formalism we choose the synchronous language SIGNAL [BLJ91].
SIGNAL is a data flow oriented synchronous language, able to represent poly-
chronous models, i.e. models with multiple independent clock domains. This
enables a maximum liberty in modeling systems, especially large distributed sys-
tems and does not impose synchronization of all components prior to implemen-
tation. SIGNAL is part of the Polychrony framework [IRI]. Polychrony comprises
other tools such as a graphical editor and viewer and the symbolic model checker
SIGALI [MBLL00].

When trying to represent a SystemC program in SIGNAL, we face two chal-
lenges. The first and most obvious one is to correctly translate the SystemC
behavior into SIGNAL syntax. From such an automated straight forward trans-
lation, we obtain a SIGNAL program that represents the original SystemC de-
scription. However it will hardly represent the original structure of the SystemC
model with its modules and connections. A simple automated translation is ig-
noring the structure of the program and producing a flat program. This is still
a formal representation of the system and can be used for verification purposes.
However, not having the structure of the system prevents benefit from the whole
potential of the transformation. The structure is needed for modular verification,
indispensable when the system size is getting too big. In addition to that it also
is a key to optimizations that the SIGNAL compiler could perform for example in
scheduling. Another advantage of having structural information is that it makes
the resulting code more readable and enables manual changes or optimizations
in the formal model directly. Being in the possession of structural information
can lead as well to other uses such as visualization, automated test generation,
or introspection. We therefore cut down the problem into two parts, the flat
translation of SystemC code into SIGNAL and the extraction of the structure of
SystemC projects, its translation into SIGNAL and its exploitation for other uses.
Handling these two problems separately reduces the complexity, and while the re-
spective results can be put together easily in the end, each part has a substantial
benefit on its own.

Translating SystemC Behavior using SSA 109

11.1 Translating SystemC Behavior using SSA

For the translation of SystemC behavior we benefit from the fact that any Sys-
temC program is a valid C++ program. As SystemC is a subset of C++, it is
from a semantic point of view almost the same to translate SystemC or to trans-
late C++. In order to avoid the complex task of creating an own C++ parser,
we use an existing open source compiler front end from the GNU Compiler Col-
lection (GCC). GCC is transforming the input C++ into a simpler structure, the
Single Static Assignment (SSA) intermediate format. As the control structure
of GIMPLE/SSA is less complex than that of C++ code, it is much easier to
translate it into a different formalism.

SystemC SystemC

SIGNAL

GCC

TranslatePostprocessPreprocess

GIMPLE /
SSA

SystemC

Figure 11.1: Translation of SystemC modules into SIGNAL

Figure 11.1 depicts the design flow for this approach. In a first step we use
GCC to transform the model into an intermediate SSA form. Since GCC is not
aware of the meaning of SystemC macros such as sc module or wait(signal x),
it simply expands them and then handle the resulting code. To keep the repre-
sentation of these SystemC commands also in the SIGNAL code, we perform a
preprocessing step to prevent GCC to expand them, and make them reappear in
the SIGNAL code during a post processing step after the transformation. Then,
where necessary, the corresponding macros have to be implemented in SIGNAL
in order to keep the resulting SIGNAL code syntactically close to the original Sys-
temC implementation. Once in SSA form, the model is translated into SIGNAL
code with the help of the translation scheme specified in Section 12.1

[BTSG04] shows how, based on the theory of [TBS+04a], formal behavioral
types can be automatically generated. With the help of a case study about a
finite impulse response filter (FIR), we demonstrate the whole flow to transform
SystemC components into a SIGNAL description. It also shows how GCC and
its intermediate format GIMPLE/SSA can be used to facilitate this transition.

110 Introduction

This approach is then presented more in detail in [TBS+04b]. What is missing
in these publications, however, is the preservation of the program architecture,
which is completely lost or only very hard to recover. The work is therefore useful
mainly for treating single components.

11.2 SytemCXML

SystemC SIGNAL

SystemCXML

GCC-SSA

Figure 11.2: Methodology for translating SystemC models into SIGNAL

In order not to lose the structural information of the original SystemC code
such as the module organization and their connections, we developed a method-
ology in which in a first step the structural information is directly extracted from
the SystemC code. We then translate the modules one by one with the help of the
translation scheme described in Chapter 12, and finally we generate a SIGNAL
architecture skeleton. The empty boxes in the skeleton code can then be filled
with the results from the module translation (Figure 11.2). Using this high level
control information the SIGNAL compiler can perform high level optimizations
such as a more efficient scheduling.

The structural model obtained from SystemC programs is extracted into an
XML structure with the list of modules, their hierarchy and their connections.
This is precious information - even without conversion into a formal framework -
and can be used for numerous other purposes such as the visualization of certain
aspects of SystemC projects and the automated generation of test vectors.

Contributions 111

Our solution is illustrated in 13, where we are presenting a front end for Sys-
temC that can be used to analyze entire SystemC projects, extract their struc-
tural information and expose this information in an easily accessible XML format.
Starting from this XML structural description we generate a formal SIGNAL de-
scription, representing the structure of the SystemC code. With the help of GCC
and the SSA to SIGNAL translation scheme defined earlier we can then fill the
empty module declaration with the module behavior. We also show, how the
XML form containing the structural information can be easily used for other
applications such as the visualization of designs or the automated generation of
tests.

11.3 Contributions

One of the main contributions of this part consists in considering the applicability
of the polychronous model of computation [LTL03] in the context of system-
level design languages such as SystemC [OSC, GLMS02]. We provide imperative
system components with formal behavioral interfaces that can be abstracted to
different levels of detail. These interfaces can be used to prove formal properties
of the components as well as on the composition of components. We propose a
technique to generically obtain formal abstractions of SystemC components and
use the power of the synchronous paradigm to formally verify the correctness of
component compositions. In particular we present a case study detailing all steps
from the analysis and translation of SystemC components to building behavioral
types for these components and synchronously composing them to detect possible
flaws. As a side note we show how these interfaces can be used to verify formal
properties of the components and their composition.

Another contribution is the demonstration of how the extraction of structural
information from IPs can open a path for a plethora of validation applications.
We specifically show for the SystemC language how with the use of open source
tools such as Doxygen and XML, the model architecture can be relatively easily
obtained and used for applications such as visualization, automated test genera-
tion, design browsing, and runtime reflection.

11.4 Related Work

The capture of the behavior of a system through a type theoretical framework
relates our technique to the work of Rajamani et al. [RR01], and many others, on
abstracting high-level and concurrent specifications, for example the π-calculus,
by using a formalism, e.g. Milner’s CCS, in which, checking type equivalence is
decidable. This work contrasts from related studies by the capability to capture

112 Introduction

scalable abstractions of the type-checked system. In our type system, scala-
bility ranges from the capability to express the exact meaning of the program,
in order to make structural transformations and optimizations on it, down to
properties expressed by Boolean equations between clocks, allowing for a rapid
static-checking of design correctness properties.

We share the aim of a scalable and correct-by-construction exploration of
abstraction-refinement of system behaviors with the work of Henzinger et al.
on interface automata [dAH01]. Our approach primarily differs from interface
automata in the data-flow formalism used in the Polychrony workbench where
partial clock and scheduling relations express the multi-clocked synchronous be-
havior of the system. Compared to a common automata-based approach, our
declarative approach allows to hierarchically explore abstraction capabilities and
to cover design exploration with the methodological notion of refinement along
the whole design cycle of the system, and can be used from the requirements
specification up to synthesis and code-generation [TLS+04, LTL03].

11.4.1 Ptolemy

Ptolemy [BHLM94, LL98] is another an example for a design environment that
allows hardware and software components to be integrated from the specifica-
tion through the synthesis, simulation, and evaluation phases. Its focus is on
the assembly of concurrent components and the key underlying principle in the
project is the use of well-defined models of computation that govern the inter-
actions between components. A major problem area being addressed is the use
of heterogeneous mixtures of models of computation; it supports more than 10
different domains including Communicating Sequential Processes (CSP), Pro-
cess Networks (PN), Synchronous Data Flow (SDF), and Discrete Event (DE).
Ptolemy II [LX01] is a more recent incarnation written in Java. It has a more
extensive user interface and works on multiple platforms.

In comparison to the approach presented here, Ptolemy is lacking however an
interface to existing model components written in a popular design language such
as SystemC.

11.4.2 POLIS, Metropolis

Another framework for Hardware-Software CoDesign of embedded systems is
POLIS [BGJ+97]. The POLIS system is centered around a single Finite State
Machine-like representation called Co-design Finite State Machine (CFSM). The
difference to a classical FSM is that the synchronous communication model is
replaced in the CFSM model by a finite, non-zero, unbounded reaction time.
This model of computation can also be described as Globally Asynchronous, Lo-

Related Work 113

cally Synchronous. The specification is a priori unbiased towards a hardware or
software implementation. Each machine can then be independently mapped into
software or into hardware by means of ad-hoc synthesis tools. POLIS uses the
formal specification language Esterel [Ber00, BG92] for design capture. Starting
from a whole unified design flow with formal verification, co-simulation (using
Ptolemy), design partitioning, hardware synthesis, and software synthesis. Inter-
faces between different implementation domains are automatically synthesized.
POLIS is one of the pioneering tools for the separation of functionality and ar-
chitecture, and has been implemented in several commercial applications that
are based on the CFSM model of computation of POLIS, Virtual Component
Codesign (VCC) of Cadence Design Systems being the most prominent.

The natural successor of Polis, Metropolis [BWH+03] started in 1997 from
the idea of freeing the designer from the too strict CFSM model of computation.
It is based on a metamodel with formal semantics that can be used to capture
designs. It supports simulation, formal analysis, and synthesis. It is based on the
same ideas than that of POLIS, but implements them more flexibly. Communica-
tion primitives and execution rules can be selected depending on the application.
Metropolis can generate SystemC code from the model’s abstract syntax tree,
which then can be compiled and executed. Also SystemC and Metropolis models
can be co-simulated, however currently there is no way to capture existing Sys-
temC IP into the Metropolis framework in order to benefit from the modeling
and verification infrastructure.

11.4.3 Existing Tools for Structural Reflection

Several tools may be used for implementing structural reflection in SystemC.
Some of them are SystemPerl [Sny], EDG [FE], or C++ as in the BALBOA
framework [FSG03]. However, each of these approaches have their own draw-
backs. SystemPerl and gSysC [EAH05] for instance, require the user to add
certain hints into the source file and although SystemPerl handles all SystemC
structural information, it does not recognize all C++ constructs. EDG is a com-
mercial front-end parser for C/C++ that parses C/C++ into a data structure,
which can then be used to interpret SystemC constructs. However, interpreta-
tion of SystemC constructs is a complex and time consuming task, plus EDG is
not to be freely used in public domain. BALBOA implements its own reflection
mechanism in C++ which again only handles a small subset of the SystemC lan-
guage. Other approaches such as [GLLA03] require modifications of the SystemC
libraries.

In [PMBS06] we position our structural information extraction into a wider
context. We describe a service oriented architecture for the introspection and
validation of system level designs. The architectural information extracted from

114 Introduction

SystemC is used for a platform that offers services such as introspection and
reflection, interactive debugging, visualization, and the generation of automated
tests. The platform is built in a way that allows the easy addition of additional
services.

11.4.4 ESys.NET Framework

ESys.NET [LAN+03] uses an interesting idea where they implement a compos-
ite design pattern for datatypes into the original source code. Their work is
inspired by the .NET framework’s reflection mechanism. ESys.NET enhances
SystemC’s datatype library by implementing the design pattern with additional
C++ classes. This altered datatype library introduces member functions that
provide introspection capabilities for the particular datatypes. However, this
requires altering the datatype library and altering the original source code to
extract structural information.

11.4.5 BALBOA Framework

The BALBOA [FSG03] framework describes a framework for component composi-
tion, but in order to accomplish that, they required reflection capabilities of their
components. They also discuss some introspection mechanisms and whether it is
better to implement reflection at a meta-layer or within the language itself. We
limit our discussion to only the approach used to provide reflection in BALBOA.

BALBOA uses their BIDL (BALBOA interface description language) to de-
scribe components, very similar to CORBA IDLs [OMG]. Originally IDLs provide
the system with type information, but BALBOA extends this further by providing
structural information about the components such as ports, port sizes, number
of processes, etc. This information is stored at a meta-layer (a data structure
representing the reflected characteristics). BALBOA forces system designers to
enter meta-data through BIDL which is inconvenient. Our method can directly
process the SystemC models.

One characteristic of this framework is the implementation of a dedicated
description language, BIDL. The designer writes the BIDL for specifying the
reflected structure information which could more easily (and less error prone) be
retrieved automatically from SystemC source, as it is done in our approach.

11.4.6 Pinapa and LusSy

Pinapa [MMMC05b, Gre] is a recently released Open Source SystemC front end
that builds upon GCC’s front end to parse all C++ constructs and infer the
structural information of the SystemC model by executing the elaboration phase,

Related Work 115

which is a very attractive solution. SystemC’s elaboration constructs all the
necessary objects and performs the bindings after which a regular SystemC model
begins simulation via the sc start function. Instead, Pinapa examines the data
structures of SystemC’s scheduler and creates its own IR. This solves the SystemC
parsing issue, it requires, however, modifications of the GCC source code which
makes it (i) dependent on changes in the GCC codebase, and (ii) forbids the
use of any other compiler. While this approach in contrast to others such as
SystemPerl and gSysC does not require to modify the SystemC models, it requires
modifications of the SystemC libraries.

Pinapa is part of LusSy [MMMC05a, Moy05], a toolbox for the formal veri-
fication of SystemC models. LusSy is specifically targeting SystemC models on
the transaction level. The IR obtained from Pinapa connects a symbolic model
checker and an abstract interpretation tool. It is also used as a basis for a series of
optimizations and can generate code for the formal frameworks Lustre [HCRP91]
and SMV [McM93].

11.4.7 Java, C# .NET Framework, C++ RTTI

Here, we discuss some existing languages and frameworks that use reflection ca-
pabilities. There are Java, C# and the .NET framework and C++ RTTI. Java’s
reflection package java.lang.reflect and .NET’s reflection library System.R-

eflection are excellent examples of existing reflection concept implementations.
Both of these supply the programmer with similar features such as the type of
an object, member functions and data members of the class. They also follow a
similar technique in providing reflection, so we take the C# language with .NET
framework as an example and discuss in brief their approach. C#’s compiler
stores class characteristics such as attributes during compilation as meta-data. A
data structure reads the meta-data information and allows queries through the
System.Reflection library. In this infrastructure, the compiler performs the
reflection and the data structure provides mechanisms for introspection.

C++’s runtime type identification (RTTI) is a mechanism for retrieving object
types during execution of the program. Some of the RTTI facilities could be used
to implement reflection, but RTTI in general is limited in that it is difficult
to extract all necessary structural SystemC information by simply using RTTI.
Furthermore, RTTI requires adding RTTI-specific code within either the model,
or the SystemC source and RTTI is known to significantly degrade performance.

11.4.8 Doxygen, XML, Apache’s Xerces-C++

Two main technologies we employ in our solution for obtaining and exploit-
ing structural information from SystemC models are Doxygen and XML. Doxy-

116 Introduction

gen [vHT] is a documentation system primarily for C/C++, but has extensions
for other languages. Since SystemC is simply a library of C++ classes, it is ideal
to use Doxygen’s parsing of C/C++ structures and constructs to generate XML
representations of the model. In essence Doxygen does most of the difficult work
in tagging constructs and also documenting the source code in a well-formed
XML. By using XML parsers from Apache’s Xerces-C++ we can parse the Doxy-
gen XML output files and obtain any information about the original C / C++ /
SystemC source. In [BPM+05b, BPM+05a] we describe the front end tool using
these techniques that we call SystemCXML. The article [PBMS04] describes a
service oriented architecture using that.

Chapter 12

Modular Verification of SystemC
Components

In this chapter we show how to provide components with formal interfaces that
not only comprise the component’s input / output signals and their types but
also causal and synchrony relations between signals. This enables more exhaustive
checks for the compatibility of components. The description of interface signal
dependencies can also be seen as a behavioral interface. Figure 12.1 shows the
connection of two components. A normal type description only checks information
about the data type of the common signals x, y, and z. As long as these types
match, the type checker will approve the composition. If for example A produces
x and y at the same rate but B consumes two values of x for each value of y, this
would go undetected. Also there is no means to discover a combinational loop
over the signal z. A behavioral type description that holds information about the
synchronization of signals is able to detect these errors. It exhibits part of the
internal functioning of the component in a data-flow synchronous formalism that
makes it possible to formally reason about these interfaces.

A

x

y

z

B

Figure 12.1: Two connected components

The synchronous composition of several of these behavioral interfaces auto-
matically reveals intricate problems in the composition of the components just
as a simple type checker would find a signal data type mismatch. Many of these
errors would otherwise remain undetected and could cause great costs and delays

117

118 Modular Verification of SystemC Components

later in the design process. The more behavior such an interface captures, the
more behavioral errors can be found. A system built from components whose
compositions all have been checked with the help of a behavioral type, can there-
fore be expected to function more reliably and have a much higher overall design
quality than compositions with simple data type checks [DSG03] - even after
thorough testing.

12.1 Methodology and Tools

Our modeling and verification methodology starts off with a SystemC model of
a system. The goal is to provide all system components with a formal behavioral
type that can be used to discover errors in the composition of components. The
formal type can also be used to formally verify properties of the components and
their composition. The methodology consists of several steps. First the Sys-
temC code is analyzed in a preprocessing step and some types are replaced for
better conversion results. Then a static single assignment intermediate repre-
sentation is generated. From this representation, clock and scheduling relations
are extracted that serve as a basis for the generation of SIGNAL code. The
compilation of the signal code performs static checking for types, dependencies,
and clock constraints. This results in a highly reliable connection of components
as the synchronous composition - once successfully performed - rules out many
sources of error that are not checked for in a common type checking system.

Any SIGNAL program also represents a formal model and can therefore also
be used to check for dynamic properties. This opens the gate for formal verifica-
tion with reasonably additional effort. For the model checker we use, the model
has to be abstracted or transformed into a Boolean version. The remainder of this
section describes some of the tools used throughout the process. In Section 12.2
all of these steps can be followed in more detail using an example of an FIR filter.

12.1.1 Static Single Assignment Form and GIMPLE

As SystemC programs are written in C++, they can contain very complex con-
structs, which make it difficult to obtain a corresponding SIGNAL representation.
It is obvious that it would be much easier to make a translation from a more low
level representation or from a C++ subset that does not make use of all the
complex constructs. Not wanting to restrict the input language, we are using an
intermediate representation that fits our needs.

GIMPLE [Mer03] is a simple intermediate representation developed at McGill
University [HDE+93] and has now been adopted in the GNU Compiler Collection
(GCC) [Fre04b]. GIMPLE is a three address C-like language with no high level

Methodology and Tools 119

control structures. Some of its particularities are that GIMPLE statements -
with the exception of function calls - contain not more than three operands and
have no side effects, intermediate values are stored in temporary variables, and
all control structures are lowered to conditional gotos.

Most of the GCC optimization passes use the data flow information provided
by the static single assignment form (SSA) [CFR+91]. This is an intermediate
representation in which every variable is assigned exactly once. It is particularly
used for high level compiler optimization. This makes it particularly useful for
our purpose, since static single assignments have a very regular structure, they
can be easily manipulated by automatic program analysis tools, and result in a
natural translation to the SIGNAL synchronous formalism.

GIMPLE and SSA are part of the Tree-SSA [Fre04a] changes that have been
integrated into the GNU Compiler Collection (GCC) starting from version 4.0,
released in April 2005. These changes allow for language independent, higher level
optimization passes. By using GIMPLE-SSA as an intermediate representation
for the behavioral type generation, we can therefore benefit from all current and
future optimization passes implemented in the GCC. GIMPLE-SSA code can be
dumped with compiler options corresponding to different levels of optimization,
such as -fdump-tree-ssa, -fdump-tree-gimple and -fdump- tree-optimized.
The last option gives the best results. When further automating the type ex-
traction process, the tree representation of GCC can be used directly in shared
memory without having to dump it to a file and to read it again.

12.1.2 Formal Verification of Component Properties

The SIGNAL compiler is an analysis and transformation tool that tries to gener-
ate executable code from the sum of equations the SIGNAL program represents.
Before this code can be generated, the SIGNAL compiler checks for static prob-
lems such as contradictory clock constraints, cycles, and zero clocks. However, in
order to check dynamic properties of the system, the SIGNAL companion model
checker SIGALI [MBLL00] can be used. Given a formal model of a system in
SIGNAL, SIGALI can verify formal properties of the model. It is an interactive
tool specialized on algebraic reasoning in Z/3Z logic.

SIGALI transforms SIGNAL programs into sets of dynamic polynomial equa-
tions that basically describe an automaton. It can analyze this automaton and
prove properties such as liveness, reachability, and deadlock. The fact that it is
solely reasoning on a Z/3Z logic constrains the conditions to the Boolean data
type (true, false, absent). This is practical in the sense that true numerical ver-
ification very soon would result in state spaces that are no longer manageable,
however it requires, depending on the nature of the underlying model, major or
minor modifications prior to formal verification.

120 Modular Verification of SystemC Components

For many properties numerical values are not needed at all and can be ab-
stracted away thus speeding up verification. When verification of numerical ma-
nipulations is sought, an abstraction to boolean values can be performed, that
suffices in most cases to satisfy the needs.

12.2 Case Study of an FIR Filter

This section exemplifies the presented approach with the design of a finite im-
pulse response filter (FIR). It details the decomposition of a full featured SystemC
specification into an SSA representation. The different analysis steps are demon-
strated down to the final typed SIGNAL representation.

As a starting point, we use the SystemC model of the FIR from the SystemC
2.0.1 distribution [OSC] and translate it into SSA code. We show how this SSA
code is analyzed and how clock and scheduling information can be extracted. In
Section 12.2.4 the corresponding SIGNAL type is presented and it is shown how
to obtain it with the preceding information.

12.2.1 The SystemC Model

In the SystemC model, the filter itself consists of one functional block surrounded
by a testbench consisting of a Stimulus that generates input values and a Display
module that receives the output and displays it on the screen (Figure 12.2).

Figure 12.2: Structure of the FIR filter with testbench

Case Study of an FIR Filter 121

The FIR unit is implemented as an SC THREAD that is triggered on the positive
clock edge. The other blocks are SC METHODs. The left hand side of Figure 12.3
displays the SystemC code of the entry function for the FIR block. The first 10
lines just handle the initialization of variables. Then there is an infinite while
loop that contains the actual filter functionality.

In short, it waits until there is a valid input available, reads this input, pro-
cesses it, writes it to an output, and then notifies its environment that the result
is available. At the end of each while loop it suspends itself until the next positive
clock edge. The FIR result is the sum of the last 15 input values weighted with
15 coefficients. This is done in two for loops. The first one does the weighting
and the second one is shifting the buffer array containing the last inputs.

Communication with the environment is done via enable signals. The Stimulus
indicates with the signal in valid that a new value is available. In the same way,
the Display is sensitive to the variable output data ready that is set when a new
output value is available.

12.2.2 Obtaining a GIMPLE-SSA Representation

The right hand side of Figure 12.3 shows the GIMPLE-SSA code that corresponds
to the SystemC FIR. For the generation of a clean GIMPLE-SSA representation
we follow three steps. First, preprocessing of the SystemC code, second, trans-
lation to GIMPLE-SSA with GCC, and third, post processing of the generated
GIMPLE-SSA code. The direct generation of GIMPLE-SSA from SystemC can
be done, but it results in very large and hardly readable code. A closer look
reveals that most of this bloating is due to the SystemC types and statements,
which are implemented as macros and get translated as well. If we replace the
SystemC types by corresponding C++ types, e.g. sc int is changed to int or
unsigned, in a simple preprocessing step, the size of the generated code shrinks
drastically.

More complex statements such as wait(signal), however, still cause a consider-
able increase of the code size compared to the original SystemC code. We decide
to simply comment these out in the SystemC source so they are ignored by the
compiler and can later be taken care of separately in a post processing step.

During post processing we replace the wait(signal) statements by correspond-
ing SSA statements. Logically a wait statement is similar to an if branch. De-
pending on a condition something is executed, otherwise something else. The
condition is the signal that we are waiting for (e.g. in valid == true. If there
is no signal given, the process waits for the signal it is sensitive to (this is the
positive edge of the clock in this example).

In order to be able to execute the wait statement separately, we have to intro-
duce a separate label for it. As we can see on the right hand side of Figure 12.3,

122 Modular Verification of SystemC Components

void fir::entry() {
sc int<8> tmp;
sc int<17>pro;
sc int<19>acc;
sc int<8>shift[16];
result.write(0);
out ready.write(false);

for (int i=0; i<=15; i++)
shift[i] = 0;

wait();

while(1) {
out ready.write(false);
wait until
in valid.delayed()==true;

tmp = sample.read();
acc = tmp*coefs[0];
for(int i=14; i>=0; i–) {
pro = shift[i]*coefs[i+1];
acc += pro;
};
for(int i=14; i>=0; i–)
shift[i+1] = shift[i];

shift[0] = tmp;
// write output values
result.write((int)acc);
out ready.write(true);
wait();
};

}

void fir::entry() {
int shift[16], i, acc, tmp;
i=0; goto L1;
this → result = 0;
this→output data ready = 0;

L0: shift[i]= 0
i = i + 1;

L1: t i = (i<=15)
if (t i) goto L0;
else goto L1a;

L1a:wait (clk1 pos);
L3: this→output data ready = 0;
L3a:wait until(in valid == true);
L3b:tmp = this→sample;

acc=this→coefs[0]*tmp;
i = 14;
goto L5;

L4: acc=acc+shift[i]
*this→coefs[i+1];

i = i - 1;
L5: if (i >= 0) goto L4;

else goto L6;
L6: i = 14;

goto L8;
L7: shift[i + 1] = shift[i];

i = i - 1;
L8: if (i>=0) goto L7;

else goto L9;
L9: shift[0] = tmp;

this→result = acc;
this→output data ready = 1;

L9a:wait (clk1 pos);
goto L3;

}

Figure 12.3: SystemC and SSA code for the FIR core

for L1, L1a is introduced since the wait statement is not at the beginning of the
block, and for L3, there are two additional labels, L3a and L3b because this wait
statement is in the middle of a block.

12.2.3 Extracting Clock and Scheduling Information

Though slightly bigger in size, the SSA representation has several advantages
with respect to automated analysis and conversion: it consists of very simple and
repetitive statements, it is separated into sequential blocks without branches and
where variable are assigned once. The extracted behavioral type information can
be separated into two parts, control and data flow.

Figure 12.4 displays this information for the FIR in the form of a synchronous
transition system (iSTS, as in [TBS+04a]). It consists of propositions on clocks
^x guarded by block input clocks xL for implications xL ⇒ ^x and of propositions
on state transitions of the form e ⇒ x′L to mean that if e is present then xL is
the next block to be executed.

Case Study of an FIR Filter 123

xfir ⇒^i
^result
^out ready
x′

L1
xL0 ⇒^shift

^i
i → shift
x′

L1
xL1 ⇒^t i

^i
i → t i
t i ⇒ x′

L0
¬t i ⇒ x′

L1a
xL1a⇒(clk1 6= clk1′)

∧ clk1 ⇒ x′
L3

¬x′
L3 ⇒ x′

L1a
xL3 ⇒^out ready

x′
L3a

xL3a⇒^in valid
in valid ⇒ x′

L3b
¬in valid ⇒ x′

L3a
xL3b⇒^tmp

^sample
^acc
^coefs
^i
sample → tmp
coefs → acc
tmp → acc
x′

L5

xL4 ⇒^acc
^shift
^coefs
^i
i → shift → acc
i → coefs → acc
x′

L5
xL5 ⇒(i ≥ 0) ⇒ x′

L4
(i < 0) ⇒ x′

L6
xL6 ⇒^i

x′
L8

xL7 ⇒^shift
^i
i → shift
x′

L8
xL8 ⇒^i

(i ≥ 0) ⇒ x′
L7

(i < 0) ⇒ x′
L9

xL9 ⇒^shift
^tmp
^result
^acc
^out ready
tmp → shift
acc → result
result → out ready
x′

L9a
xL9a⇒(clk1 6= clk1′)

∧ clk1 ⇒ x′
L3

¬x′
L3 ⇒ x′

L9a

Figure 12.4: Clock and scheduling relations for the FIR

In order to understand how these clock relations are obtained, we have to take
a look at the SSA form in Figure 12.3. For instance, xL0 ⇒ ^shift means that
whenever block L0 is entered, the signal shift has to be present. Transitions from
one block to another are represented like this: xL4 ⇒ xL5. However, if in the
following block a signal is assigned that has already been assigned in the current
block, it cannot be executed in the same cycle. The time has to be advanced,
this is expressed in xfir ⇒ x′L1, where the ′ indicates the next value for this signal.
For if statements - such as in block L1 - the value of a Boolean signal decides
which of the two targets is taken. Figure 12.5 graphically details this control flow.
There are several small loops, such as the one between L1 and L2, representing
the manipulation of an array of values.

The big loop between L3 and L9 represents the actual program execution
loop. Everything before that deals with initialization. After initialization the
program waits for the next positive clock edge. At the beginning of the execution
it is waiting for a valid input value. Then the calculations are executed and it
subsequently waits for the next positive clock edge before resuming execution at
block L3.

124 Modular Verification of SystemC Components

Figure 12.5: Control flow of the FIR filter

Figure 12.6: Data Flow of the FIR

Data flow dependencies for the FIR are displayed on the right hand side
of Figure 12.4. The structure of these dependencies is very simple, the arrow
(a→b) showing that a has to be present before b can be evaluated. Overall we
see that for the FIR example, the control part largely outweighs the data flow
part. Figure 12.6 illustrates the data flow of the example. We see that for the
execution loop, the major data activity takes place in blocks L3b, L4, L7, and
L9. L3b reads the external inputs coefs and sample, L9 eventually produces the
outputs out ready and result.

12.2.4 The Equivalent SIGNAL Program

As described earlier, the combination of control and data flow can be expressed
by SIGNAL equations. In order to obtain such equations, it is helpful to have
the clock and scheduling information particularized earlier, but they can also be
obtained directly from the SSA representation to reflect all control and data flow
information. Figure 12.7 details the SIGNAL equation giving the corresponding
abstraction of the FIR behavior.

Case Study of an FIR Filter 125

process fir=(? boolean input_valid,clk1;
integer sample

! integer result;boolean out_ready)

|t_i^= sample ^= input_valid ^= sample_tmp ^= acc
^=shift ^= coefs ^= result ^= xfir ^= xL1 ^= xL3
^=xL3b ^= xL9 ^= xnL1a ^= xnL3a ^= xnL4 ^= xnL13
^=xnL7 ^= xnL9a ^= clk1 ^= out_ready|)

where integer i, sample_tmp, acc;
[16] integer shift , coefs, zshift;
boolean xL3b, xnL1a, xL3, xL13, xL7, xL4, t_i,
xfir, xL0, xL1, xL1a, xnL0, xnL1, xnL3a, xnL4,
xnL13, xL5, xL8, xL9, xL9a, xL3a, xnL7, xnL9a;

end;

process stimulus =
(? boolean clk1; integer cycle
! boolean input_valid; integer sample, t_cycle)

(| xstim := clk1
| t_cycle:=cycle + 1 when xstim default t_cycle$
| cond1 := cycle <=3 default false
| xL0 := when cond1 when xstim$ default false
| xL1 := when not cond1 when xstim$ default false
| input_valid := false when xL0

default false when xL1
default true when xL2 default false

| xL3 := when xL0
default when not cond2 when xL1
default when xL2 default false

| cond2:=(cycle modulo 19 == false) default false
| xnL2 := when cond2 when xL1 default false
| xL2 := xnL2$
| sample := send_value when xL2 default sample$
| write("Sample: ", sample when input_valid)
| send_value := (send_value$ init 0) +1 when xL2 default

send_value$
| clk1 ^= input_valid ^= send_value ^= t_cycle

^= cycle ^= cond1^= cond2^= xstim ^= xL0
^= xL1 ^= xnL2 ^= xL3 ^= sample

|) where integer send_value; boolean cond1,
cond2, xstim, xL0, xL1, xL2, xnL2, xL3;

end;

| xL3 := when (xL1a or xL9a)
when clk1 when clk1 = clk1$ init 0
default false

| xnL1a := when not t_i when xL1 default false
| xL3a := when xL3 default xnL3a$1 init false
| xL3b := when xL3a when input_valid

default false
| xnL3a := when xL3a when not input_valid

default false
| sample_tmp := sample when xL3b

default sample_tmp$ init 0
| i ::= 15 when xL3b
| out_ready ::= false when xL3
| acc ::= coefs[0] * sample_tmp when xL3b

process display =
(? boolean out_ready; integer result)
(| o_result := result when out_ready
| message1 := "Result: "
| write(message1, o_result)
| o_result ^= message1
|) where string message1; integer o_result;

end;

(|coefs:=[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
| xfir := false when xL1

default (xfir$ init true)
| i ::= 0 when xfir
| i ::= i$ +1 when xL0
| result ::= 0 when xfir
| out_ready ::= false when xfir
| xnL1 := xfir
| xL1 := when xL0 default xnL1$1 init false
| zshift := shift$1
| t_i := (i < 15) when xL1 default false
| xnL0:= t_i
| xL0 := xnL0$1
| xnL1a := when not t_i when xL1 default false
| xL1a := xnL1a$1

| acc ::= acc$ + shift[i]* coefs[i+1] when xL4
| xL5 := when xL3b default xL4
| xnL4:= when i>0 when xL5 default false
| xL4 := xnL4$1
| xnL13:= when i<=0 when xL5 default false
| i ::= i$ -1 when xL4

| xL13 := xnL13$1
| xL8 := when xL13 default xL7
| xnL7 := when i>0 when xL8 default false
| xL7 := xnL7$1
| xL9 := when i=0 when xL8 default false
| xnL9a := when xL9 default when xL9a

when not clk1 default clk1 = clk1$ init 0
default false

| xL9a := xnL9a$1
| i ::= 15 when xL13
| i ::= i$ -1 when xL7
| result ::= acc when xL9
| out_ready ::= true when xL9
| array k to 15 of
shift[k] := (k when xL0)
default (shift[k-1] when (k=i+1) when xL7)
default (sample_tmp when k=0 when xL9$)
default zshift[k]

end

Figure 12.7: Block view of the SIGNAL type for the FIR filter

126 Modular Verification of SystemC Components

Translation can be done block-wise, and mostly line by line. The SIGNAL
language strictly prohibits multiple assignments of a variable within one block
and at the same instant to conform with a purely synchronous execution. When-
ever there is the need to advance time before a move from one block to an-
other, the execution of the next block is delayed using a signal delay statement
xL1 := xnL1$1 init false. Here xnL1 represents the next value and xL1 its

current value. A variable that gets assigned a value in more than one block would
be renamed in SSA.

In SIGNAL it does not have to be renamed, instead we can use partial equa-
tions, designated with the ”::=”. A partial equation defines a variable for a
certain number of instants. A second or third partial equation then can define
additional instants for this variable, as long as it is not defined twice on any
instant. Since the instants of the blocks are temporarily disjoint, a variable can
be defined once per block with the help of partial equations instead of once per
program. Two partial equations for the variable out_ready could be distributed
anywhere in the program:

out_ready ::= false when xL3
| out_ready ::= true when xL9

Still, partial equations are a source of errors since it is difficult to make sure
that they are conflict-free, and to have parts of a variable defined in different
parts of the program can also obstruct legibility. This is why we often combine
these partial equations afterward into full equations, adding a default statement
that otherwise is implied by the compiler:

out_ready := false when xL3
default true when xL9
default false

In the code given in Figure 12.7, six partial equations for variable i have been
combined. Assembled at one location, it is more clear to see that the definitions
do not conflict. In the FIR example, we do not have any complex data manipu-
lations. Would that be the case, it would probably be unreasonably complicated
to describe them in SIGNAL. In such cases, they can be wrapped as external
functions using SIGNAL’s pragma directive. With pragma statements external
code can be used directly. When the type is provided with appropriate signal de-
pendency and clock synchronization relations, these functions are not completely
black boxes to the system. This pragma mechanism permits the handling of data
flow intensive applications without much additional cost.

Case Study of an FIR Filter 127

12.2.5 Making a Boolean Model

As explained Section 12.1.2 the FIR model has to be abstracted to a Boolean
model in order to check dynamic properties with the symbolic model checker
SIGALI of the Polychrony workbench. Usually, it is not necessary to transform
the whole model to a binary form as we might not be interested in all numerical
details of the model, but rather some higher level properties such as liveness or
deadlock-freedom.

To build such a binary model it has first to be checked whether any float or
integer variables are present and how they are used. In the FIR, no float variables
are used. However, the actual values of the FIR are integers. They are generated
in the stimulus, fed into the FIR and stored in a 15 stage pipeline. The result is
calculated numerically and then the output is an integer again.

We reduce the model to binary values in several stages. At first, we reduce
the pipeline from fifteen to three stages, representing the stages not by an integer
variable, but by three Boolean variables. The input values for the FIR are then
reduced to (0, 1, 2) and also represented by Boolean variables. Finally, the most
tricky part is the numerical calculation of the result. With the current reduction
of values and coefficients, the output of the FIR can never be greater than 15,
so we use four Boolean variables as output, interpreted as the bits of a four bit
binary number. While the total size of the binary model in number of lines nearly
doubled, the state-space for verification only represents a fragment compared to
the integer version and is now small enough to be used for formal verification.

12.2.6 Using the Model Checker

Once we have a binary model of the FIR, the model checker can be used to
verify formal properties on it. In order to do this, the SIGNAL program has to
be compiled with the option -z3z, which results in the generation of a file with
the extension .z3z. This is the input file for SIGALI. It contains a model of
the SIGNAL program expressed using polynomial dynamical equations, the data
structure manipulated by SIGALI.

As an example on how to define a property for verification, signal test3, Fig-
ure 12.8 is a Boolean property describing the situation that once the system
reaches block L3 and the signal input valid is true, it will reach block L9 in
at most three steps. We define test2 as an auxiliary variable that is only true
between L3 and L9. The state variable test3 will be true as soon as test2 has
been true for more than three cycles and there was no new value in between.

Figure 12.9 depicts the interaction with the model checker. In the first state-
ment, the z3z file of the design is read. Then internal libraries are loaded. Finally
we check for liveness, if property ’test3’ is reachable and if it is always false. If

128 Modular Verification of SystemC Components

1 test2 := true when xL3b
default false when xL9

3 default test2$1 init false
test3 := true when (test2 and test2$1 and

5 test2$2 and test2$3)
when (input_valid$2 = false)

7 default test3 init false

Figure 12.8: Example of a formal property definition

test3 is not reachable and always false, then the property holds true.

1 read("top.z3z");
read("Creat_SDP.lib");

3 read("Verif_Determ.lib");
read("Property.lib");

5 Alive(S);
Reachable(S,B_True(S,test3));

7 Always(S,B_False(S,test3));

Figure 12.9: Verification of Properties using Sigali

12.2.7 Abstraction of the SIGNAL Model

The SIGNAL program described in Figure 12.7, is the model that implements the
FIR filter. It is an exact SIGNAL mirror of the original SystemC implementation.
For many purposes, however, all functionality is not needed in order to evaluate
the validity of a condition. An abstracted model that does not contain data
manipulations is much lighter and can still serve to check conditions such as
deadlocks, termination, and race-conditions.

Figure 12.10 depicts the code for a possible abstraction for the FIR model,
reduced to the description of control-flow transitions between blocks. The light
weight of this model allows for much faster verification of properties, and, there-
fore makes it possible to check for these properties on more abstract design levels,
possibly comprising the whole system. For detailed checks including correctness
of data manipulations or range-checks, the complete type can be used.

Summary 129

12.3 Summary

The approach presented shows how to obtain a behavioral type from SystemC
components. The passage through the GIMPLE-SSA form allows for a straight-
forward translation to a formal synchronous model. One important property of
this methodology is that it can be applied automatically, such that formal be-
havioral types can be extracted from a library of existing SystemC components.
Depending on the desired accuracy of the behavioral types, the resulting descrip-
tions can be extracted in order to reduce the size of the model for an possible
formal verification of design properties. Such formal properties can be checked
for with the SIGNAL companion model checker SIGALI. We illustrate the func-
tioning of the methodology with the help of a case study of an FIR filter and
work is currently being done in the group to entirely automate this process.

130 Modular Verification of SystemC Components

1 process fir (? boolean input_valid , clk1
! boolean out_ready)

3 (| out_ready := false when xfir
default false when xL3

5 default true when xL9
default out_ready$ init false

7 | xfir := false when xL3
default (xfir$ init true)

9 | xL3 := true when xfir$
when clk1

11 when not (clk1 = clk1$)
default true when xL9a

13 when clk1
when not (clk1 = clk1$)

15 default false
| xL3a := true when xL3

17 default xnL3a$1 init false
| xL9 := true when xL3a

19 when input_valid
default false

21 | xnL3a := true when xL3a
when not not input_valid

23 default false
| xnL9a := true when xL9

25 default true when xL9a
when ((not clk1)

27 default (clk1 = clk1$))
default false

29 | xL9a := xnL9a$1
| input_valid ^= xfir ^= xL3 ^= xL9 ^= clk1

31 ^= xnL3a ^= xnL9a ^= out_ready
|) where integer i; boolean xL3 , xnL3a , xL3a ,

33 xL6 , xfir , xL9 , xL9a , xnL9a;
end;

Figure 12.10: Abstract SIGNAL model

Chapter 13

Automated Extraction of
Structural Information from
SystemC-based IP

The rising complexity of embedded system design and a widening of the produc-
tivity gap have raised the importance of System Level Design (SLD)s languages
and frameworks. In recent years, we have seen SLDs such as SpecC and SystemC
[GZD+00, OSC] in efforts to raise the level of abstraction in hardware descrip-
tion languages. These SLDs assist designers in modeling, simulation, validation
and verification of complex designs. However, the high complexity and hetero-
geneity of designs make it difficult for embedded system designers to meet the
time-to-market. Designers require improved methodologies for verification and
validation and tools for debugging and visualization for easier model building to
mitigate this productivity crisis. The growing size of common system models is
forcing design houses to reuse intellectual property from other designs or from
third party companies. The fact that all the different parts of the design have
not been conceived in one toolset and by the one actually using it is becoming
an additional challenge.

Aside from writing regular testbenches as test-driver modules in SystemC,
the SCV library [OSC] is a good medium of writing different types of testbenches
allowing features such as randomized testbenches. Unfortunately, the designer
must have an understanding of the design, interconnections, datatypes, etc. to
generate a testbench using SCV. Furthermore, as the design undergoes changes,
the testbench in SCV must be altered. Automating this process of altering the
testbench for a design requires access to the structural design information, but
most SLD languages and frameworks do not provide a clean mechanism for query-
ing such information. This is why we think it is important that tools are able
to automatically extract and exploit structural design information from exist-

131

132 Automated Extraction of Structural Information from SystemC-based IP

ing SLD models in order to further facilitate a realm of design tasks for easier
model management, model visualization, automated test generation, improved
debugging, etc.

Our approach to extracting structural design information uses a suite of
open-source technologies consisting of Doxygen [vHT], Apache’s Xerces-C++
XML [Fou], in combination with a C++ library to enable validation tasks exploit-
ing this information. We also do not require any interface description language
for entering meta-data. Our approach is based on pre-processing SystemC mod-
els through our tools. To show the benefits of having easy access to structural
design information, we implement several clients that use it. These clients serve
only as examples of exploiting this kind of information and using it for validation
purposes. One example is a visualization backend that generates graphical views
of the structural information, another is an automated test generator.

Here, we provide details on our approach to the extraction of structural in-
formation from existing SystemC designs and describe clients that exploit this
information for design validation purposes. We show the benefits and impor-
tance of having access to structural design data for the validation of system level
designs.

In Section 11.4 we discuss some related work, along with the technologies we
employ. We discuss the main contributions of this work in Section 11.3. Sec-
tion 13.1 then describes how the structural information is extracted, Section 13.2
describes how this information can be used for different validation aspects and
we finally give some concluding remarks and future work in Section 13.4.

13.1 Extracting Structural Information

Here, we present details on the infrastructure for the automated extraction of
structural information. We only provide small code snippets to present our ap-
proach and the concept of using Doxygen, XML, Xerces-C++, and a C++ data
structure to perform the extraction and provide the information to use it for val-
idation purposes. For more details on the inner workings of the tool please refer
to [BPM+05b].
Doxygen pre-processing: Using Doxygen has the immediate benefit of C/C++
parsing and its corresponding XML representations. However, Doxygen requires
declaration of all classes for them to be recognized. Since all SystemC constructs
are either, global functions, classes or macros, it is necessary to direct Doxygen
to their declarations. For example, when Doxygen executes on just the SystemC
model then declarations such as sc in are not tagged, since it has no knowledge
of the class sc in. The immediate alternative is to process the entire SystemC
source along with the model, but this is very inconvenient when only interested
in reflecting characteristics of the SystemC model. However, Doxygen does not

Extracting Structural Information 133

SystemC
 source

annotated XML generated XML

Doxygen extraction object
transformation

 code
generation

 tests visualization

 internal
structure

SIGNAL hierarchy connections random...

Figure 13.1: Design Flow for the extraction

perform complete C/C++ compilation and grammar check and thus, it can po-
tentially document incorrect C/C++ programs. We leverage this, by indicating
which particular classes need to be tagged, by simply adding the class definition
in a file that is included during processing. There are only a limited number of
classes that are of interest and they can easily be declared such that Doxygen rec-
ognizes them. As an example we describe how we force Doxygen to tag the sc in,
sc out, sc int and sc uint declarations. We include this description file every
time we perform our pre-processing such that Doxygen recognizes the declared
ports and datatypes as classes. A segment of the file is shown in Figure 13.2,
which shows declaration for input and output ports along with SystemC integer
and SystemC unsigned integer datatypes.

1 /*! SystemC port classes !*/

template <class T> class sc_in { };
3 template <class T> class sc_out { };

5 /*! SystemC datatype classes !*/

template <class T> class sc_int { };
7 template <class T> class sc_uint { };

Figure 13.2: Examples of class declarations

The resulting XML for a small code example is shown in Figure 13.3. Doxy-
gen itself also has some limitations though and it cannot completely tag all the

134 Automated Extraction of Structural Information from SystemC-based IP

constructs of SystemC without explicitly altering the source code, which we avoid
doing. For example, the SC MODULE(arg) macro defines a class specified by the ar-
gument arg. Since we do not include all SystemC files in the processing, Doxygen
does not recognize this macro when we want it to recognize it as a class decla-
ration for class arg. However, Doxygen allows for macro expansions during pre-
processing. Hence, we insert a pre-processor macro as: SC MODULE(arg)=class

arg: public sc module that allows Doxygen to recognize arg as a class de-
rived from class sc module. We define the pre-processor macro expansions in
the Doxygen configuration file where the user indicates which files describe the
SystemC model, where the XML output should be saved, what macros need to
be run, etc. We provide a configuration file with the pre-processor macros defined
such that the user only has to point to the directory with the SystemC model.
More information regarding the Doxygen configuration is available at [vHT].

<memberdef kind="variable" id="classfir_1firr0">
 <type>
 <ref refid="classsc__in" kindref="compound">sc_in<ref> <bool>
 </type>
 <definition>sc_in<bool> fir::reset</definition>
 <name>reset</name>
</memberdef>

<memberdef kind="variable" id="classfir_1firr5">
 <type>
 <ref refid="classsc__out" kindref="compound">sc_out</ref>
 <<ref refid="classsc__int" kindref="compound">sc_int</ref> <16> >
 </type>
 <definition>sc_out<sc_int<16> > fir::result</definition>
 <name>result</name>
</memberdef>

SC_MODULE(fir)
{
 sc_in<bool> reset;
 sc_in<bool> input_valid;
 sc_in<int> sample;
 sc_out<bool> output_data_ready;
 sc_out<sc_int<16> > result;
 sc_in <bool> CLK;

 SC_CTOR(fir)
 {
 SC_CTHREAD(entry,CLK.pos());
 }

void entry();
};

SYSTEMC MODULE

DOXYGEN OUTPUT

<module type = "SC_MODULE" name = "fir" >
 <inport type = "bool" name = "reset" />
 <inport type = "bool" name = "input_valid" />
 <inport type = "int" name = "sample" />
 <outport type = "bool" name = "output_data_ready" />
 <outport type = "int" bitwidth = “16” name = "result" />
 <inport type = "bool" name = "CLK" />

<constructorof modulename = "fir" >
<process type = “SC_CTHREAD" name = "entry" />
<sensitivitylist name = “CLK” edge = “positive” />

</constructorof>
</module>

ASLD

Figure 13.3: Doxygen XML Representation

Even through macro preprocessing and class declarations, some SystemC con-
structs are not recognized without the original SystemC source code. However,
the well-formed XML output allows us to use XML parsers to extract the un-
tagged information. We employ Xerces-C++ XML parsers to parse the Doxygen
XML output, but we do not present the source code here as it is simply a pro-
gramming exercise, and point the readers at [BMPS04] for the source code.
XML Parsers: Using Doxygen and XML parsers we reflect the following struc-
tural characteristics of the SystemC model: port names, types and widths, signal

Extracting Structural Information 135

names, types and widths, module names and processes in modules and their en-
try functions. We reflect the sensitivity list of each module and we also reflect
the netlist describing the connections including structural hierarchy of the model.
We represent this reflected information in an Abstract System Level Description
(ASLD) XML file. The ASLD validates against a Document Type Definition
(DTD) which defines the legal building blocks of the ASLD that represents the
structural information of a SystemC model. For example, some constraints that
the DTD enforces are that two ports of module should have distinct names or
all modules within a model should be unique, which verifies that the ASLD cor-
rectly represents an executable SystemC model. The main entities of the ASLD
are shown in Listing 13.4.

ASLD: In Listing 13.4, the topmost model element corresponds to a SystemC
model with multiple modules. Each module element acts as a container for the
following: input ports, output ports, inout ports, signals and submodules. Each
submodule in a module element is the instantiation of a module within another
module. This way the ASLD embeds the structural hierarchy in the SystemC
model and allows the introspective architecture to infer the toplevel module. The
submodule is defined similar to a module with an additional attribute that is
the instance name of the submodule. The signal element with its name, type
and bitwidth attributes represents a signal in a module. Preserving hierarchy
information is very important for correct structural representation. The element
inport represents an input port for a module with respect to its type, bit width and
name. Entities outport and inoutport represent the output and input-output port
of a module. Line 16 describes the constructorof element which contain multiple
process elements and keeps a sensitivitylist element. The process element defines
the entry function of a module by identifying whether it is an sc method, sc thread
or sc cthread. The sensitivitylist element registers each signal or port and the
edge that a module is sensitive to as a trigger element. Connections between
submodules can be found in a module or in the sc main. Each connection element
holds the name of the local signal, the name of the connected instance and the
connected port within that instance. This is similar to how the information is
present in the SystemC source code and is sufficient to infer the netlist for the
internal data structure.

Using our well-defined ASLD, any SystemC model can be translated into
an XML based representation and furthermore models designed in other HDLs
such as VHDL or Verilog can be translated to represent synonymous SystemC
models by mapping them to the ASLD. This offers the advantage that given a
translation scheme from say a Verilog design to the ASLD, we can introspect
information about the Verilog model as well.

Data structure: The ASLD file serves as an information base for our reflection
capabilities. We create an internal data structure that reads in this information,

136 Automated Extraction of Structural Information from SystemC-based IP

1 <!ELEMENT model (module)* >
<!ATTLIST model name CDATA #REQUIRED >

3 <!ELEMENT module (inport|outport|inoutport|signal|submodule)*>
<!ATTLIST module name CDATA #REQUIRED type CDATA #REQUIRED >

5 <!ELEMENT submodule EMPTY >
<!ATTLIST submodule type CDATA #REQUIRED name CDATA #REQUIRED

7 instancename CDATA #REQUIRED >
<!ELEMENT signal EMPTY >

9 <!ATTLIST signal type CDATA #REQUIRED bitwidth CDATA #IMPLIED
name CDATA #REQUIRED >

11 <!ELEMENT inport EMPTY >
<!ATTLIST inport type CDATA #REQUIRED bitwidth CDATA #IMPLIED

13 name CDATA #REQUIRED >
<!ELEMENT constructorof (process * | sensitivitylist) >

15 <!ATTLIST constructorof modulename CDATA #REQUIRED >
<!ELEMENT process EMPTY >

17 <!ATTLIST process type CDATA #REQUIRED name CDATA #REQUIRED >
<!ELEMENT sensitivitylist (trigger)* >

19 <!ELEMENT trigger EMPTY >
<!ATTLIST trigger name CDATA #REQUIRED edge CDATA #REQUIRED >

21 <!ELEMENT connection EMPTY >
<!ATTLIST connection instance CDATA #REQUIRED

23 member CDATA #REQUIRED local_signal CDATA #REQUIRED >

Figure 13.4: Main entities of the DTD

Applications for Validation 137

enhances it and makes it easily accessible. The class diagram in Figure 13.5 gives
an overview of the data structure. The topmodule represents the toplevel module
from where we can navigate through the whole application. It holds a list of
module instances and a list of connections. Each connection has one read port
and one or more write ports. The whole data structure is modeled quite close to
the actual structure of SystemC source code. All information about ports and
signals and connections are in the module structure and only replicated once.
Each time a module is instantiated, a moduleinstance is created that holds a
pointer to its corresponding module.

The information present in the ASLD and the data structure does not contain
any behavioral details about the SystemC model at this time, it merely gives
a control perspective of the system. It makes any control flow analysis and
optimizations on the underlying SystemC very accessible.

MODULE

PROCESSINPORT SIGNALOUTPORT

PORT

*

SENSITIVITY
LIST

INOUTPORT

TOPLEVEL

*** ***

MODEL

*

1

1

CONNECTION *
*

*
1MODULE

INSTANCE
MODULE

REGISTRY

Figure 13.5: Class diagram showing data structure

13.2 Applications for Validation

13.2.1 Visualization

One possible usage of SystemCXML is to facilitate graphical visualization. For
large models especially, it is very intuitive to explore a design visually rather than
trying to infer the structural aspects of the model by browsing through the code.
This problem becomes even more difficult, if the model description is disturbed

138 Automated Extraction of Structural Information from SystemC-based IP

over multiple files. Therefore having any form of visualization for the project
does ease exploration and debugging capabilities. There are visualization modes
at different levels of abstraction that can help to better comprehend a design,
such as the netlists displaying module connections on one or multiple levels, the
module hierarchy, a layout with blocks whose sizes are mapped to the code size of
the corresponding modules. The ability to provide the above visualization modes
can be easily achieved through an extraction of the structural information of the
model, therefore it is not necessary to understand the behavioral aspects. As
visualization can greatly improve productivity, it should be an integral part of
any SLDL tool suite. Design visualization tools are especially helpful for design
space exploration and semi-automated design refinements. In addition to the
above advantages, the automatic generation of a graphical visualization of the
design can also be used for documenting different IPs, a step often neglected,
leading to better collaboration in terms of IP exchange between different vendors
and enhancing reusability of components.

In order to demonstrate the ease of creating such a visualization, we implement
a back-end pass that generates a graph of the SystemC module hierarchy. Since,
there are many free libraries available for graph rendering, we decided to use the
DOT format [GKNV93] from the graphviz [GN00] package to render our graphs.
It is a comprehensive and easy to use package, which is used in many Open Source
projects.

13.2.1.1 The DOT format.

Figure 13.6 shows the DOT code for the FIR filter example and the resulting
graph. We use a digraph layout and choose boxed nodes whose width automati-
cally adjusts to the length of the node label. The first occurrence of a node name
creates the node. Directed connections are indicated with the ”->” symbol.

There exist many programs to interactively view DOT files or convert them
into various picture formats. Dotty is the standard viewer and part of the
Graphviz, but there are better viewers such as [Pie05].

13.2.1.2 Graph generation.

To generate the graph, we start with the list of toplevel modules, these are mod-
ules that are not a submodule of any other module. Then we call the recursive
function submod dot that writes out the relations to all submodules and succes-
sively calls itself for all the submodules. As a node label we give the module
name and the name of the instance. In order to keep a strict tree structure with
no rejoining branches, all instances have to have different names. However in
the SystemC code this is not necessarily the case. For example, we have three
modules A, B and C, with B1 being an instance of B and a submodule of A.

Applications for Validation 139

1 digraph usb
{

3 node[shape=box];
ratio=fill;

5 sc_main;
sc_main ->"i_phy\nusb_phy";

7 sc_main ->"i_top\nusb_top";
sc_main ->"i_test\ntest";

9 }

(a) DOT code

sc_main

stimulus1
stimulus

fir1
fir

display1
display

(b) Resulting graph

Figure 13.6: Example DOT code and resulting graph

Now if A1 and A2 are submodules of C, we get 2 instances of B that have the
name B1, namely in A1 and A2. In order to avoid this we keep track of multiple
instantiations of a module and distinguish between the respective submodules.

sc_main

i_fifo
usb_fifo64x8

i_test
test

i_ram
usb_ram64x8

sc_main_1

i_phy
usb_phy

i_test (2)
test

i_tx_phy
usb_tx_phy

i_rx_phy
usb_rx_phy

sc_main_2

i_rom
usb_rom

i_test (3)
test

sc_main_3

i_test (4)
test

sc_main_4

i_test (5)
test

sc_main_5

i_phy (2)
usb_phy

i_top
usb_top

i_test (6)
test

i_tx_phy (2)
usb_tx_phy

i_rx_phy (2)
usb_rx_phy

i_usb
usb

i_core
usb_core

i_ff_ep1
usb_fifo512x8

i_ff_ep2 (2)
usb_fifo512x8

i_ff_ep3
usb_fifo128x8

i_ff_ep4 (2)
usb_fifo128x8

i_ff_ep5 (3)
usb_fifo128x8

i_ff_ep6 (4)
usb_fifo128x8

i_phy (3)
usb_phy

i_sie
usb_sie

i_ep0
usb_ep0

i_rom (2)
usb_rom

i_ff_in (2)
usb_fifo64x8

i_ff_out (3)
usb_fifo64x8

i_tx_phy (3)
usb_tx_phy

i_rx_phy (3)
usb_rx_phy

i_pa_sie
usb_pa_sie

i_pd_sie
usb_pd_sie

i_pe_sie
usb_pe_sie

i_dma
usb_dma

i_crc16
usb_crc16

i_crc5
usb_crc5

i_crc16 (2)
usb_crc16

i_ff2
usb_fifo2

i_ram (2)
usb_ram64x8

i_ram (3)
usb_ram64x8

i_ram
usb_ram512x8

i_ram (2)
usb_ram512x8

i_ram
usb_ram128x8

i_ram (2)
usb_ram128x8

i_ram (3)
usb_ram128x8

i_ram (4)
usb_ram128x8

Figure 13.7: Visualization of the extracted module hierarchy of a USB controller

Figure 13.7 shows a part of the module hierarchy of the SystemC implementa-
tion of a USB controller from OpenCores [Cor]. In the lower right hand corner you
can see four instances of usb fifo128x8, containing an instance of usb ram128x8.
These have been numbered in order to be able to distinguish them. The figure
also shows that there is not only one connected graph but multiple graphs. This
is due to the fact that we read in the whole SystemC project as one file containing
all source and header files. Larger projects often contain multiple sc main func-
tions, used to individually simulate parts of the design in a separate testbench,
which is the case in this example. The visualization of the hierarchy helps to see
the different parts of the design and understand their usage.

140 Automated Extraction of Structural Information from SystemC-based IP

The code for the back-end pass to generate the graphical visualization illus-
trating the module hierarchy, took around 60 lines of C++ code. This is small
when considering the value add. We assert that given the captured structural
information, multiple back-end passes for other visualization modes or transfor-
mations can be added with comparable effort, reducing the effort needed in trying
different things or implementing a desired functionality. An enhancement to the
current version of the our visualization mode would allow the module connec-
tions where the user can choose the number of displayed hierarchy levels. We
were looking into this option as well, but Graphviz does not natively support
this kind of nested hierarchy, so it may be necessary to use of a different graph
rendering library.

13.2.2 Design Management

Another important possible use of structural design information is design man-
agement. Large designs are getting difficult to maintain - even if they are kept
in a file and folder structure that is readily accessible. Browsing a design graph-
ically or through tree and list views can help in managing and maintaining large
designs. This makes it easy to view the different components of a design and
furthermore it helps in identifying the component of concern, which reduces the
effort needed in isolating a particular component of interest to the user.

Suppose the user is interested in knowing the amount of RAM attached to
the overall design. This is not obvious to infer from the code since a single
RAM module can be instantiated with different sizes at multiple places within
the same module as well as across modules. Furthermore, there may be possible
RAM instantiations in the design that were done for testing purposes, which is
not a part of the actual design. For these cases, the designer can use the module
hierarchy visualization, to view all the instances down to the leaf level, from
which it is easier to filter out all the RAM instantiations and sum them up to get
an idea of how much memory is been used and how much space is needed on the
chip. Figure 13.7 illustrates the module structure of a USB controller, it contains
two 64k blocks, four 128k blocks, and two 512k blocks, which sums up to 1664
kilobytes RAM. This calculation does not include the 64 kilobytes instantiated
in the test of usb fifo. This valuable information can be easily achieved using our
module hierarchy view, which is otherwise very tedious.

Another design management task can be to identify certain functionalities in
old designs and package them into a new IP for future use. In a netlist view
the graphical selection of a set of modules can then be put into a new module
with an automatically generated interface, containing all these modules and their
dependent submodules. Again this kind of operation only necessitates knowing
the structural information, but otherwise tedious to perform.

Applications for Validation 141

13.2.3 Automated Test Generation

We develop a testbench Generator client that uses the structural information
to support automated test generation. The test generation client is built using
the SystemC verification (SCV) [OSC], which is a library of C++ classes, that
provide tightly integrated verification capabilities within SystemC. The testbench
Generator interacts with the ASLD by invoking the respective API calls to access
the structural information pertaining to test generation. The generator takes as
input a SystemC model and generated automatically a SystemC test for the
selected part of the model. This testbench Generator uses structural information
such as the type, bitwidth of ports and signals to generate test vectors appropriate
for this specification of the SystemC model. The generator also has the abilities
to generate tests for pre-specified ports or signals of a SystemC model. The client
generates different tests based on the mode in which it is set. The different mode
can be set during initialization of the client. The unconstRand, simpleRand and
distRand are the currently defined modes.

The test generator can create constrained and unconstrained randomized test-
benches. In the unconstRand mode, the client generates unconstrained random-
ized tests using objects of the scv smart ptr<T> class of SCV, which are con-
tainers for objects of type T. In the simpleRand mode constrained randomized
testbenches are created. These tests issue Keep out and Keep only commands to
define the legal range of values given in the data file. Similarly in the distRand
mode, SCV bag objects are used in test environments providing which takes a
data file as input with the values and their probability.

Furthermore, the Test Generator uses the SystemC constructs to generate
trace file in the format of Value Change Dump (VCD). This provides the user
with a trace file with value changes on all the reflected variables, ports and signals
of the model, which can used for debugging purposes. To generate a trace file,
the Test Generator creates a trace file, registers the reflected variables, ports and
signals to be traced and closes the trace file.

Test generation example. We briefly describe the automatic test generation
using a small part of the USB example in Figure 13.7. We take a look in particular
at the module usb crc5, a simple CRC checksum checker. Figure 13.8 shows the
interface of the CRC checker module. It has to input variables, din for the data
value, and crc in, for the CRC value. For this very simple example we show how
to automatically generate test vectors for these inputs.

In the simpleRand mode, constrained testbenches are created by initializ-
ing SCV smart pointers for the pre-specified port as shown above. Furthermore
the random values generated are constrained by defining keep out and keep only
constructs with the legal ranges given from the input data file as shown in Fig-

142 Automated Extraction of Structural Information from SystemC-based IP

SC_MODULE(usb_crc5) {
2 public:

sc_in <sc_uint <5> > crc_in;
4 sc_in <sc_uint <11> > din;

sc_out <sc_uint <5> > crc_out;
6 void update(void);

SC_CTOR(usb_crc5) {
8 SC_METHOD(update);

sensitive << crc_in << din;
10 }

};

Figure 13.8: Interface of the module usb crc5 from the USB example

1 /*! Defining SCV smart pointers !*/

scv_smart_ptr <int > r_crc_in;
3 scv_smart_ptr <int > r_din;

5 /*! Generating the randomized values !*/

r_crc_in ->next ();
7 r_din ->next ();

Figure 13.9: Testbench snippet in unconstRand mode for a pre-specified port

Applications for Validation 143

ure 13.10. If no data file is provided then by default random legal ranges are
defined.

1 /*! Defining simple constraints !*/

scv_smart_ptr <int > r_crc_in;
3 scv_smart_ptr <int > r_din;

5 /*! Defining the legal ranges !*/

r_crc_in ->keep_only (10 ,1000);
7 r_crc_in ->keep_out (100, 300);
r_crc_in ->keep_out (600, 900);

9 r_din ->keep_only (1 ,10000000);
r_din ->keep_out (1000, 30000000);

11 r_din ->keep_out (3001000 , 9000000);
r_din ->keep_out (9001000 , 10000000);

Figure 13.10: Testbench snippet in simpleRand mode for a pre-specified port

In the distRand mode, constrained testbenches are generated by defining
SCV bags that are given legal ranges and the probabilistic distribution of these
ranges from an input data file as shown in Figure 13.11. As in the simpleRand
mode, if an input data file is not given then a default distribution and its proba-
bility is provided.

/*! Defining weights for the distribution mode !*/

2 scv_smart_ptr <int > r_crc_in;
scv_bag <pair <int ,int > > d_crc_in;

4

/*! Defining the legal ranges !*/

6 d_crc_in.add(pair <int , int > (1, 100), 40);
d_crc_in.add(pair <int , int > (5000100 , 500700) , 30);

8 d_crc_in.add(pair <int , int > (8000600 , 800900) , 60);

10 /*! Setting the distribution mode !*/

r_crc_in ->set_mode(d_crc_in);

Figure 13.11: Testbench snippet in distRand mode for a pre-specified port

During initialization, if the ports are not specified then the test generating
client generates tests with respect to all the ports of the given model in focus.

The code snippet that creates a trace file for the usb crc5 module with the
reflected ports crc in, din and crc out is shown in Figure 13.12:

We intend to improve our automated testbench generation capabilities by
first implementing additional clients such as coverage monitors and simulation

144 Automated Extraction of Structural Information from SystemC-based IP

1 /*! Step 1: Creating a trace file !*/

sc_trace_file* tf = sc_create_vcd_trace_File("trace");
3

/*! module!*/

5 usb_crc5 crc_inst("crc_inst");

7 /*! Step 2: Register signals and variables to be traced !*/

sc_trace(tf, crc_inst.crc_in , "crc_input");
9 sc_trace(tf, crc_inst.din , "din");

sc_trace(tf, crc_inst.crc_out , "crc_output");
11

/*! Step 3: Close the trace file !*/

13 sc_close_vcd_trace_file(tf);

Figure 13.12: Snippet of the testbench showing the trace file creation

performance monitors to better analyze the SystemC model. These additional
clients assist the testbench Generator in making more intelligent and concentrated
testbenches.

13.3 Current Work

As of now, we can extract the structural information from SystemC projects
and generate SIGNAL process skeletons. These structural skeletons can be filled
with the behavioral information retrieved from the behavioral C++ to SIGNAL
transformation that also has been defined. We are currently working on entirely
automating the transformation from SystemC behavior to SIGNAL and to in-
tegrate it with the structure. The major part of the work still to be done is
to implement the adequate SIGNAL equivalents for certain SystemC constructs
such as sc fifo or sc semaphore have to be defined. These can then form a library
that would significantly simplify the conversion process.

13.4 Summary

Large scale system designs and increasing component reuse from diverse sources
makes design validation a nightmare. Simulation and testing are important vali-
dation tools, but they are not sufficient for an increasing number of applications.
Formal models and formal verification are one possible answer to this problem,
however building correct formal models is difficult and means a lot of additional
effort for an already existing design.

Summary 145

In this chapter we show how to automatically transform a SystemC descrip-
tion into the formal language SIGNAL. We describe how SystemC behavior can
be translated into SIGNAL using the GCC intermediate SSA representation.
In order not to lose the structure of the original model, it has to be obtained
separately. In order to do this, we present a methodology for the automated
extraction of structural information from already existing SystemC projects. In
addition to using structural data for the generation of SIGNAL process skeletons,
we illustrate how the data can be easily exploited for other applications such as
visualization, design management tasks, and automated test generation.

All parts of the system have been implemented using open source tools such
as GCC, Doxygen, and Xerces-C. In the conception and implementation we have
been attentive to use open standards and interfaces such as the intermediate SSA
representation and XML, and the source code of the SystemC structural extrac-
tion tool is published as an open source project at Sourceforge.net [BMPS04] for
others to study and use.

When combining the structural and the behavioral transformation results we
obtain a formal model that is functionally equivalent to the original SystemC
model. This formal model can help to find errors in the original design, e.g. in
the connection with other components. If a synchronous composition of several
SIGNAL processes is successful, the connection of the corresponding SystemC
components is very likely to work. Additional confidence can be gained by veri-
fying formal properties of the components as well as of any composition of com-
ponents thus increasing certainty on the correctness of the whole system design.
To speed up verification or to concentrate on specific functionalities, the formal
model can be abstracted to the desired level. If this methodology is applied sys-
tematically, a growing library of verified IP components is obtained that helps
to substantially reduce development cycles and eventually makes it possible to
develop safer and larger systems.

146 Automated Extraction of Structural Information from SystemC-based IP

Chapter 14

Incrementally Building Formal
Models

14.1 Introduction

In our experience, both in carrying out formal verification for major microproces-
sor chips, as well as, working on tools and methodologies, we have found that the
major challenges faced by industrial formal verification engineers are two fold:
(i) Making sure that the natural language specification of the system is trans-
lated into a sufficiently complete set of formal properties to be used in model
checking of an implementation, (ii) In conformance based formal verification us-
ing abstraction techniques, creating an abstract model which satisfies all formal
properties intended in the natural language specification. Most of the times, it
is hard to validate the sufficiency/completeness of the property suite developed
from the natural language, or to make sure that the abstract model is constructed
correctly. By ”correctly” we mean that the set of behaviors of the abstract model
is not only a super set of the set of behaviors of an implementation, but also
a subset (in the best case, equal) to the set of behaviors intended/allowed by
the natural language specification. Our XFM based methodology addresses these
problems, and with two illustrative examples (of a control intensive traffic light
controller, and the DLX pipeline) we present this methodology and show the ben-
efits. Our experiments show that this methodology not only constructs abstract
models with sufficiently shorter time than the time taken in constructing ad hoc
abstract models from implementation or specification, but also provides models
which are constructively correct and closer to the intended specification.

Extreme programming (XP) has been popularized in the object oriented soft-
ware community in the recent years. It introduced novel guidelines and concepts
of an agile methodology that seem to increase programming productivity signif-
icantly while producing higher quality error free code [WK03] [Wil03]. Some of

147

148 Incrementally Building Formal Models

the features of extreme programming are use of ’user stories’, ’test-first’ develop-
ment, ’refactoring’, ’continuous regression’ etc., which we have found very useful
in creating more dependable software if applied properly. In the spirit of our
successful use of extreme programming in software development, we decided to
experiment with a parallel methodology in formal model construction.

Spoken Language
Specification

Linear Time Properties Ad Hoc Abstract Model

Model Checking

revise

Figure 14.1: State of the art to capture a formal model

Figure 14.1 and 14.2 show our comparison of the current state of the art in
capturing formal specifications against our XFM approach. Figure 14.1 shows
that an ad hoc abstract model is usually built from an English specification and
checked against formal properties with a model-checker. Some times, to make
matters worse, the ad hoc abstraction is built from an implementation itself,
which is then checked against the implementation for conformance. In our view,
that defeats the purpose of formal verification, except that the abstraction step
might uncover bugs unknown to the implementors. There are several drawbacks
in this approach. First of all, the ad hoc building of both the model and the
properties is error prone and the effort of model building and debugging grows
exponentially along with the size of the model. Next, as there is no way to con-
trol the inclusion of all properties, some may be overlooked, thus reducing the
significance of the model. Then, if a property fails, it is tedious to debug the
model. Few indications exist where the bug is located. Finally, there is a ten-
dency that the model will include more behavior than the specification will allow.
Often implementation detail gets into the abstract model. These tendencies might
make the model have undesirable properties and hence the implementation being
checked against it may have those too. Also implementation detail in the abstract
model may introduce unwanted complexity and may later cause problems in a
conformance check.

Figure 14.2 presents XFM’s incremental approach to formal modeling. From
the English specification, we first derive a simple formal property, then build an
abstract model for this property and model check if it holds for the model. Once

Contributions 149

User Story
1

User Story
2

User Story
N

Property
1

Property
1 + 2

Property
1+2+….+N

Model

Final Model

Model
Check

Satisfied

No

Yes

ModelModel
Check

Satisfied

No

Yes

ModelModel
Check

Satisfied

No

Yes

Spoken Language
Specification

Figure 14.2: Capturing a formal model with XFM

the property is satisfied, we take a second property, extend the model according
to this property, and model check for both properties. This procedure is repeated
until the abstract model contains all behavior from the English spec (Figure 14.2).
One way to make sure that it does is by simulating the model. The controlled
and incremental model building results in a compact, structured abstract model.
Whenever a property fails to validate, it usually is straightforward to find the
bug as it must be related to the latest additions. The complete effort of modeling
and bug fixing grows linearly along with the size of the model.

14.2 Contributions

The work presented in this chapter has been conducted in the framework of
the INRIA associated teams program with the FERMAT (Formal Engineering
Research with Models, Abstractions, and Transformations) laboratory of Vir-
ginia Polytechnic Institute and State University. It tempts to lower the difficulty
to build formal models from spoken language requirements specification and to
create formal models that are correct by construction. One of the main contri-
butions is to use agile methods that are most prominently known from Extreme

150 Incrementally Building Formal Models

Figure 14.3: Modeling process (a) and modeling result (b)

Programming (XP), to investigate their potential in the field of formal verifica-
tion, to conceive a methodology that exploits the benefits of using agile methods
for the building of formal methods and to validate the methodology with the help
of some example projects.

This initial work has been done by Syed Suhaib, Sandeep Shukla, and myself
and has been initially published as a technical report [BSSH05].

Later, the work has been conducted further mainly by Syed Suhaib who made
this the topic of his masters thesis [Suh04] and Deepak Matthaikutty resulting
in more extensive examples, a more rigorous formalization, and an extension to
make the results more predictable. This part of the work is presented briefly in
Section 14.6.

14.3 Incremental Model Building and Poly-

chrony

The methodology presented in this chapter does not work for all types of programs
and specifications. Having said that, it is not restricted to the PROMELA lan-
guage and SPIN which we use as an example. The formal framework Polychrony
is predisposed for the incremental building of formal models. In this section we
exhibit certain formal requirements and advantages that a modeling framework
has to feature in order to be able to be used for this kind of incrementally model
building. Due to a lack of time and resources it has currently not been imple-
mented in Polychrony, however, we show how the approach relates to Polychrony
and in what would be the particularities of a possible implementation. In order
to successfully build incremental formal models, certain conditions have to be

Incremental Model Building and Polychrony 151

respected and others, even if they are not necessary, improve the efficiency of the
process.

14.3.1 Nondeterminism

Nondeterminism is the property of a computation that may have more than one
possible outcome. Most programming languages are deterministic in nature, given
a certain input, they generate always the exact same output. Most systems in
reality however are nondeterministic. There may be communication delays or
hardware effects causing a system to reach states that would not be accessed
otherwise. Also programs that contain states depending on user choices or other
input that is not known a priori exhibit nondeterministic behavior. For the
formal modeling of these systems the formalism used has to be able to capture
the systems’ inherent nondeterminism in order to be able to explore the complete
state space when checking for the properties. If the code is to be executed the
nondeterminism has to be resolved such that a deterministic program can be
generated. This can be done by making defined or random choices for the values
in question, restricting all possible behaviors of the system until a single behavior
is left. Both Promela and Polychrony support the description of nondeterministic
programs. While in Promela during simulation this is resolved with the help
of random choices, in Polychrony, defined choices have to be made before the
generation of executable code.

14.3.2 Verification Logic

A verification logic supports formal reasoning about properties of programs in a
specific programming language by embedding rules coherent with the semantics
of the language. A verification logic has to be expressive, such that the major-
ity of logic properties can be expressed. However it also has to be simple and
intuitive such that it is easy to correctly express a desired property. These two
requirements are often in conflict. A very expressive verification logic has the
tendency to be difficult to use, and a good intuitive logic can restrict the ex-
pressiveness. Common temporal verification logics comprise Linear Time Logic
(LTL), computation tree logic (CTL), extended temporal logic (ETL), and propo-
sitional temporal logic (PTL). For the differences in expressiveness and more or
less intuitive expression, the verification logic has to be chosen carefully. SPIN is
using LTL as a verification logic, but it supports also the formulation of temporal
properties in the form of FSMs.

152 Incrementally Building Formal Models

14.3.3 Compositionality

Compositionality for a specification means, that different parts of the specifica-
tion can be put together into a specification describing exactly the behavior of
the sum of the two. In SPIN compositionality is not very easily accomplished
as the integration of two partial specifications represents some effort. There are
languages however, that support the composition of two partial specifications
with no additional effort. SIGNAL programs for example represent a system
of equations that are all evaluated at the same time. As there is no order for
the equations, two SIGNAL programs can be added to each other by just con-
catenating the two. Such a level of compositionality is favoring the incremental
specification, as the adding of functionality does not always require to adapt the
already existing code.

Another aspect of compositionality is partial specification. Partial specifi-
cation means that different aspects of the system can be described separately.
The main idea is that a specification consists of a collection of interlocking par-
tial specifications, each describing the system from a different viewpoint. This
is important for large designs where diverse aspects of a system are not always
specified within the same team. As SIGNAL descriptions support an easy compo-
sition, Polychrony does natively support the expression of partial specifications.
It has to be assured however that the partial specifications are consistent between
them [BDBS99].

14.4 Methodology

As for any system development, it is important to have a concise and clearly
written specification of the system. Some time must be spent on the specs to get
an overview of the whole system and maybe visualize its main structure. Both,
a clear system specification and a deep understanding of the system are crucial
for good LTL properties.

The initial part of our XFM procedure involves breaking down the English
specification to user stories. We select a user story that describes basic function-
ality of the system, and transforms it into an LTL property. The next step is
to check if the LTL property correctly expresses the behavior of the user story.
LTL 2 BA eases this step by displaying the corresponding FSM. If the property is
sound, we start building the model corresponding to this property. It is important
that while implementing the model only the behavior of this property is taken
into account. If the model checker fails to validate the property, we can locate the
error with the help of the trace file generated by the model checker, fix the bug
and rerun verification. Once verification is successful we pick the next basic user
story, transform it into an LTL property and extend the model obtained from the

Methodology 153

previous property to satisfy this one as well. This procedure is repeated until it
contains everything that is specified in the English spec. The final model can be
simulated to ensure that all specified functionalities are incorporated. If a certain
functionality is found missing, we identify the corresponding LTL property and
extend the model accordingly. After correct simulation, the model and the list of
LTL properties should be complete.

14.4.1 Tools

As our model checking environment we chose the SPIN model checker because it
is one of the most popular model checkers in todays modeling of concurrent sys-
tems. However, we could use any model checker for the same compelling results.
For SPIN, the models are specified in PROcess MEta LAnguage (PROMELA),
a system description language. Its basic building blocks are asynchronous pro-
cesses, message channels, synchronizing statements, and structured data. Once
the model is built, the user can simulate it with the built-in simulator and verify
formal properties. Verification properties can be entered in LTL or in the form
of PROMELA never claims, for properties that are not expressible in LTL.

LTL is the leading technique for specification of temporal rules. It extends
propositional logic with the four operators “always” (condition holds always in
the future), “eventually” (condition holds sometime in the future), “next” (con-
dition holds in the next cycle), and “until” (condition A holds until condition
B, afterwards do not care). All LTL operators are listed in Figure 14.4. As to
the expressiveness of LTL, it is complete with respect to first order logic [Hen00].
Temporal expressions that cannot be expressed in LTL, can be provided to SPIN
in the form of a never-claim automaton.
Small changes in a LTL property, like the misplacement of a parenthesis, can
change the meaning completely. For example [](a→<> (b U c)) represents a sim-
ple 2-state automaton, if we move one parenthesis before the <>, it is a 7 state
automaton. Even if these kinds of mistakes are hard to detect, it is especially
important that properties are correctly defined before checking the model for it.
There is a tool called LTL 2 BA [Odd01] (LTL to Büchi automata) that gener-
ates a Büchi automaton representing any LTL expression. This visualization is
instrumental in verifying that the expression matches the specification. LTL 2
BA also generates PROMELA code from an LTL expression. Therefore it could -
in theory - be used to obtain the abstract model directly and automatically from
the LTL properties. However, in practice this does not work since it is neither
possible to describe concurrent processes in LTL nor to describe implementation
details such as initial states or changing state variables.

154 Incrementally Building Formal Models

!A negation
A→B implication

A ↔ B equivalence
A && B and
A || B or

[]A Always
A U B until
<> A eventually
X A next

Figure 14.4: LTL operators

14.4.2 Extreme Programming

As stated earlier, XFM works on the lines of XP. Many of the XP rules can be
applied directly and successfully in XFM. For instance one of the main XP rules
is to write tests before the actual code. In XFM this rule maps to specifying
the LTL property before writing the abstract model. Another important XP
technique is to add functionality as late as possible, keeping the model simple
for as long as possible. Iterations are small steps in the development process.
At the start of each iteration the goals are identified and written down in the
form of “user stories” - individual cards that point out specific implementation
details and requirements. These user stories act as a detailed guideline for the
programmer. To refactor problems as much as possible, to update tests after a
bug is found, and to work in pairs are also principles that are as beneficial to
the capturing of formal methods as they are for common programming projects.
The benefit of other XP techniques such as a stand up meeting in the mornings,
collective code ownership and moving people around depends on the type of the
project, the size of the team, and on personal and corporate preferences.

14.5 Example

In order to demonstrate the power of XFM we present two examples from dif-
ferent domains and of different complexity. A simple traffic light will illustrate
the main steps, tools, and techniques involved. The design of a DLX [HPG02]
microprocessor pipeline will show how this works for a bigger model, and how
the model evolves with the incremental approach.

Example 155

never both have a green signal []!(!c&&!p)
If cars cannot go, they will go even-
tually

[](c→<>!c)

No button pressed, cars keep going []((!c&&!sw)→ X!c)
No button pressed the pedestrians
cannot walk

[]((p&&!sw)→ Xp)

When the switch is pressed while
the cars go, pedestrians will go be-
fore the switch is turned off.

[](sw&&p →
swU(!p&&sw)&&(!p&&sw →
!pU(!p&&!sw)))

Figure 14.5: LTL properties for traffic light (c = cars stop, p = ped stop, sw =
button is pressed)

Figure 14.6: FSMs of traffic properties 1 (a), 2 (b), 3 (b)

14.5.1 Traffic light model.

This is a very simple example of a pedestrian crossing with a traffic light. When
a pedestrian pushes a button, the lights turn red, and the pedestrians can walk.
After one minute the pedestrians get a red light and the cars red light goes off. So
this description is the English specification. Now, we construct LTL properties
describing this system. We start with the most important property that states
that both pedestrian and car, can never get the GO signal at the same time: []!(!p
&& !c). We verify that the property concurs with the specification with LTL 2
BA. Figure 14.6(a) shows the automaton corresponding to this property. The
corresponding model is just as simple, just one state.
The next property we come up with states that whenever the cars stop, they
will eventually go (Figure 14.6(b)). Figure 14.5 lists all LTL properties for this
example. LTL does not allow to express exact timing, only relative occurrences of
events. But in the model we add a timer that counts to 60 before the pedestrians
stop and the cars can run again. The model now includes two states, one where

156 Incrementally Building Formal Models

Figure 14.7: Graph for traffic property 5

cars go (!c) and pedestrians stop (p) and the other where pedestrians go and cars
stop.
The following two properties state that when no switch is pressed, the cars keep
driving and the pedestrians keep stopping (Figure 14.6(c)). As we check these
properties against the formal model, we realize that they can be verified without
making any modifications to the system, and a closer look at the properties shows
that their behavior is already satisfied by property 1 (Figure 14.6(a)).
One functionality that is still missing is the inclusion of the switch. When cars
go and the switch is pressed, eventually pedestrians should be allowed to walk
before the switch turns off. This property is a bit longer than the others, and
without LTL 2 BA it is not easy to figure out if it is correct (Figure 14.7). After
implementing the functionality of these properties into the model, simulation
shows that it works as specified, so we have found all properties. Figure 14.8
shows the PROMELA code for the traffic light example.

14.5.2 Model of a DLX Pipeline Control

The actual power of the XFM approach develops when working on large systems.
The pipeline control of the DLX RISC processor model [HPG02] is a well known
and reasonably large example to show the use of XFM. The DLX has a 5-stage
pipeline, which means up to five instructions can run concurrently. The cycles
for the instructions are instruction fetch (IF), instruction decode (ID), execute
(EX), memory access (MEM), and write back (WB). However, not all instruction
types use the same cycles in the same order. Figure 14.9 shows the cycle usage
for the different instruction types.

Example 157

1 bool sw, c, p;
int time;

3 active [0] proctype signal ()
{

5 cargo:
p=1; c=0;

7 if
:: (1) -> sw =1; time =30; goto pedgo

9 :: (1) -> goto cargo
fi;

11 pedgo:
c=1; p=0; sw =0;

13 time = time -1;
if

15 :: (time > 0) -> goto pedgo
:: (time == 0) -> goto cargo

17 fi
}

19 init {
p = 1; c = 0; sw = 0;

21 run signal ();
}

Figure 14.8: Promela code for pedestrian crossing

Starting from this system description, we identify the first user story. One of
the most basic behaviors states that each instruction executes in a certain order.
So, generally speaking, instructions execute in the order IF → ID → EX →
MEM → WB. In LTL this can be expressed as [](if → Xid), always ID after
IF and then the same for ID and EX, EX and MEM, MEM and WB, and finally
WB and IF. The automaton generated with LTL 2 BA (Figure 14.11(a)) shows
that the LTL expression is sound. These five properties can be represented with
a circular automaton that satisfies our first user story.

The second user story is the fact that this order of execution still has to hold
when we consider five concurrent instructions in the pipeline. In order to keep

IF ID EX MEM WB
Arithmetic X X X X
Load X X X X X
Store X X X X
Branch X X X X

Figure 14.9: Cycles for different instruction types

158 Incrementally Building Formal Models

the model small we decide to use five concurrent processes each of which handles
one instruction (Figure 14.14). Since the processes run independently, the first
property does not hold any more. It is not guaranteed that directly after the
first instruction is in the fetch stage it advances to the decode stage, since in
the meantime other processes may get execution time. What we can guarantee
however, is that we will never go directly into any of the other stages. Now this
has to be expressed for each cycle in each instruction, which means we get 25
LTL properties like cat1 in Figure 14.12.

proctype instruction1 () {
2 inst_if:

if
4 :: st1=fet; goto inst_id fi;

inst_id:
6 if

:: st1=dec; goto inst_ex fi;
8 inst_ex:

if
10 :: st1=ex; goto inst_mem fi;

inst_mem:
12 if

:: st1=mem; goto inst_wb fi;
14 inst_wb:

if
16 :: st1=wb; goto inst_if fi; }

Figure 14.10: PROMELA code for one single instruction

Figure 14.11: Graphs of pipeline properties 1 (a), 3 (b), and 4 (c)

In the next iteration we introduce the possibility to control the instructions
from outside. This is done by ”enable signals”, one for each instruction. The
LTL expression will say that an instruction will not advance unless the enable
signal is given (Figure 14.11(b)). Again we obtain 25 properties in the style of

Example 159

cat1 [](if1→!(Xex1||Xmem1||Xwb1))
cat1b []((ex1&&(load1||store1||branch1))→!(Xif1||Xwb1||Xdec1||Xwait1))
cat2 []((if1&&!enable1)→ (if1Uenable1))
cat2b []((wait1&&!enable1)→ (wait1Uenable1))
cat3 [](if1→ ((enable1Udec1)||!enable1))
cat3b []((ex1&&(load1||store1||branch1))→ ((enable1Umem1)||!enable1))
cat4 []((if1&&enable1)→ ((!(if2&&enable2)||(!(if3&&enable3))||

(!(if4&&enable4))||(!(if5&&enable5)))U !enable1))

Figure 14.12: Example LTL properties for the DLX pipeline

cat2 in Figure 14.12. The changes in the model for these properties are small, so
all of them can be verified without problems.

The following iteration is adding some synchronization. Our user story says
that the control enables each instruction in each cycle. Once the instruction
advances, it is setting its enable signal to zero, thus signaling the control that it
is ready for the next cycle. This category of properties is somewhat more complex,
but with the help of the LTL 2 BA tool we finally find cat3 in Figure 14.12. It
reads that whenever a stage is true, it will change to the next stage before the
enable sign goes down, unless the enable sign is already low (Figure 14.11(c)).
Again we get one of these properties for each stage that is 25. Once the correct
properties are found, the changes in the model are small, and after all properties
verified (including the previous ones), we can check the correct behavior with the
builtin SPIN simulator.

Another important behavior of a pipeline is to prohibit the multiple usage of
resources. If at no time the fetch, decode, execute, address bus, and data bus
units are used by more than one instruction there are no resource conflicts. Cat4
in Figure 14.12 expresses this in LTL for the fetch cycle of the first instruction.
Again the category will consist of 25 properties, one for each cycle. In order to
satisfy this property in the model we are introducing a control process that in an
initialization phase will start each instruction successively, and later makes sure
that the every instruction advances in each cycle. Again the verification of all
properties and simulation finishes up this iteration step. With only 4 categories
of properties the basic functionality of the pipeline is now verified and working.

To make the model of the pipeline a bit more realistic, we select the user story
that defines the different instruction types and their different cycle sequences from
Figure 14.9. It turns out that this does not result in a new category of properties,
but rather implies changes to existing properties. This step illustrates that in
the iterative process, not only does the model evolve, but also the properties
can evolve and get more complex later in the modeling process. To satisfy the
requirement, we extend our basic instruction automaton with a wait stage and

160 Incrementally Building Formal Models

IF

EX

DECWB

WAIT

MEM

Arith

Store / Branch

Load

Arith

Store / Branch

Load / Store / Branch

Figure 14.13: Pipeline automaton for one instruction

transitions according to Figure 14.9 (Figure 14.13). This will make sure that an
arithmetic instruction for example will now go from EX to WAIT and then to
WB. We have to change some properties in category 1 and 3, and add properties
in all four categories. Resulting LTL examples are shown in cat 1b and 3b in
Figure 14.12. Changes in the abstract model to reflect this are limited to update
the FSM description for each instruction to the automaton of Figure 14.13 that
means introducing the notion of an instruction type, and adding the transitions to
and from the wait stage. For the control these changes are transparent since after
the changes still each instruction takes 5 cycles to finish, therefore preventing the
occurrence of structural hazards. Figure 14.14 shows the complete structure of
the pipeline model. Of course there would still be many more details that missing
in this pipeline description, such as data dependencies and forwarding, but as the
steps are always the same, we will not detail all of them here.

14.6 Subsequent Work

Following the establishment of the methodology, this work has been continued
and elaborated mainly at Virginia Tech. In this section I would like to give a
short overview on the developments, extensions and results that were spawned
by the original XFM work.

Subsequent Work 161

Control Unit

ID

EX

IF

ME

WB
W

ID

EX

IF

ME

WB
W

ID

EX

IF

ME

WB
W

ID

EX

IF

ME

WB
W

ID

EX

IF

ME

WB
W

EN1

EN2

EN3

EN4

EN5

Figure 14.14: Structure of the DLX pipeline

14.6.1 Property Ordering

One further thought was as how the order of including the functionality of prop-
erties in the model is effecting the outcome. In the original XFM methodology,
the order of properties was not fixed, and during modeling we discovered that
the inclusion of certain properties did add more complexity to the model than
others. The question arose as how to select the next property in line. One an-
swer is experience. An experiences designer that knows the model well and has
a vision of what the system should look like in the end will be more capable of
choosing properties first that incur small additions to the model, so that the size
of the model is growing slowly in the beginning and is getting large only towards
the end. This has the big advantage, that while the model is small, it is easier to
keep the overview, to make changes, and perform refactoring.

The FERMAT group then investigated as if it was necessary to be an expe-
riences developer to make that choice, or if there was a pattern that could be
automatically determined. They come up with three automated property order-
ings which they try on some example case studies. The three ordering schemes
are:

• random: In random ordering, a randomly generated order is chosen. The
result of this is very uncertain, as by chance it can turn out to be a very
bad but also a very good ordering.

162 Incrementally Building Formal Models

• property based: What is called ”property based ordering” basically orders
the properties depending on the level of entanglement with other properties.
The entanglement is measures as a weighted sum of the occurrences of all
of a properties predicates in other properties. Predicates are specific states
of variables, such as x = TRUE.

• predicate based: This ordering scheme sorts the properties depending
on the absolute frequency of occurrence of predicates in the properties.
Properties that contain predicates that do rarely occur are modeled first.

In [SMSB05] it is shown formally and experimentally how the different order-
ing mechanisms perform. It contains contains some larger case studies suc has
the ISA bus architecture and the bus arbitration logic of the Intel Pentium Pro
processor. These case studies permit on the one hand to validate the general
XFM methodology for larger hardware models, and on the other hand provide
experimental material for the evaluation of the property ordering mechanisms. As
a result, the experimental data as well as the formal considerations both suggest
that a predicate based ordering scheme is most likely to let the model grow late in
the model building process. Although this does not mean, that predicate based
ordering always gives the best result, it indicates, that using predicate based or-
dering the state space increase of the models is more controlled than with other
ordering schemes such as property based ordering or a random order.

14.6.2 GUI Toolkit

Further work in the FERMAT group also includes the implementation of a GUI
toolkit, that facilitates the experimentation with different property ordering rules.
Given a set of LTL properties the user can choose one of the three defined ordering
rules and have the tool give a sorted list of the properties. As the designer
is incrementally building the model, the tool can check the properties for the
model, by interfacing to the SMV model checker [McM93].

14.7 Summary

This chapter presents a novel approach to use mechanisms from extreme pro-
gramming to capture formal models. Instead of building an ad hoc formal model
and come up with properties to check it against, we show that when building the
model along with the properties, the model will grow linearly and get a natural
structure. The major benefits are the faster model building process and the qual-
ity of the model compared with the traditional approach. Since we handle small
steps, each step does add limited functionality to the model, so the debugging

Summary 163

process is much more directed. Another major benefit resides in the scalability.
When ad hoc models are built, they usually result in a monolithic model, diffi-
cult to verify formally. Using XFM, complex models get broken down into small
problems and can be built as concurrent state machines more easily while at the
same time writing the corresponding formal properties.

164 Incrementally Building Formal Models

Chapter 15

Validating Latency Insensitive
Protocols

This chapter tackles the difficulties related to the integration of large scale sys-
tems on a chip. The underlying work has been performed in cooperation with the
FERMAT group at Virginia Tech. I mainly worked with Syed Suhaib on latency
insensitive protocols (LIP), which are protocols designed to integrate compo-
nents on a chip, that can synchronously communicate with each other even if
the distance between them is greater than the limit of conventional synchronous
communication. Together we implemented formal models for different versions of
latency sensitive protocols, starting with the one proposed by Carloni [CMSV99].
During this process I proposed a modified version of the Carloni protocol that
is eliminating the need for relay stations and lowering the additional effort for
routing. We successfully implemented this version as well and verified its correct
functioning with the help of a model checker. Following these results, the work
has been mainly continued by the FERMAT group, who made additional for-
malization efforts, and added a validation framework for LIP based on functional
languages. This follow up work is shortly summarized in Section 15.4.

15.1 Introduction

In the current System-on-chip (SoC) based design, reduced time-to-market de-
mands efficient reuse of complex components. This has led to the idea of de-
veloping libraries of Intellectual Properties (IPs) or reusable components. The
integration of such complex IPs on SoC and communication between them has
shifted the performance bottleneck of the system from computation to commu-
nication. With clock frequencies of these IPs in the multiple gigahertz range,
and the interconnection distances staying almost constant with the chip size, we
have hit the limit, where the signal propagation distance during one clock cycle is

165

166 Validating Latency Insensitive Protocols

shorter than the longest wire. The solution is to distinguish short interconnects
from long interconnects, and use the long interconnects preferably on low traf-
fic inter-component communication. Intelligent repeaters on their interconnects
make sure that no value sent through them is lost. This approach is known as
Latency Insensitive design. The idea is to create a design from a specification
without assuming any latency in the interconnects, such that the resulting design
is latency equivalent to the specification. Informally, latency equivalence means
that given the same input signals, the output signals have the same ordering of
events except for interspersed absent events.

While this is solving the fundamental problem, there are still issues that make
the application unsatisfactory. We see two main concerns: (i) These repeaters
or relay stations are additional components that have to be placed on the floor
plan, and consequently require changes in the original placement and routing.
Several iterations of a lengthy process may be necessary in order to reach a
state where all timing constraints are met. (ii) In such a completely synchronous
design all components have to run the same clock frequency. Reusing IPs from
different origins however often imply that these IPs are designed to run at varying
frequency ranges. Furthermore, only a few components have to run with the
fastest clock, others could run at a much slower clock, while still meeting all their
performance constraints.

In this chapter, we illustrate a technique with an example to show how to
successively eliminate these two constraints, reducing overhead caused to the
designer in terms of design time, while at the same time leaving them more room
in their power budget. In the first step, we show how to get rid of the relay
stations, by putting some extra intelligence into the component interface. In the
next step, we show an extension of these interfaces that allow for components to
have defined rational clock relations, in contrast to having the same fixed clock
for all components. Both of these improvements can be done systematically, while
minimizing changes in the actual component and therefore eliminating additional
sources of errors. We employ formal verification as our strategy for ensuring that
as we gradually refine our protocols, we maintain functional equivalence to the
original intent of the latency insensitive design.

15.1.1 Related Work

Latency insensitive protocols (LIP) for systems with long interconnection delays
(i.e. greater than one clock cycle) were proposed by Carloni et al [CMSSV99,
CMSV01, CMSV99] for single-clock SoCs. All processes with long interconnects
are encapsulated in a wrapper to derive a process that is latency equivalent to the
actual process, without having to modify the internals of the original IP. Relay
stations are added along the long interconnection wires similar to repeaters in

Introduction 167

order to ensure successful data transfer. They contain at least two registers and
a small control logic. The insertion of these relay stations increases the number
of elements to route and requires additional space on the chip for placement.
Once it is determined where relay stations have to be added based on the length
of the wires, placement and routing of the entire chip design now including the
relay stations have to be redone. Several iterations for placement and routing are
needed in order to get a configuration that satisfies all interconnection constraints.

All components of such latency insensitive (LI) designs are assumed to op-
erate with the same clock. Singh and Theobald generalize the LI theory for
GALS systems [ST04]. In their approach, complex FSMs control all input and
output signals. The communication network is implemented as an asynchronous
system to connect modules with different clocks. Overall this approach is asso-
ciated with heavy penalties in terms of implementation costs and performance.
Casu and Macchiarulo show how to reduce chip area compared to Carloni’s ap-
proach [CM04]. They use a smart scheduling algorithm for the functional block
activation and substitute the relay stations with simple flip-flops. One disad-
vantage of this approach is that the schedule has to be computed a priori and
depends on the computation in the process. If any change is made in any pro-
cess, it may result in change of flow of tokens. In this case, the schedule has
to be recalculated which is an expensive procedure. In our approach, we do not
face the problem of implementing complex FSMs, asynchronous communication
protocols, or scheduling computations. Instead we propose to solve the latency
problem without using relay stations along the wires. We also generalize the
solution for multi-clock systems where communication is done based on a glob-
al/communication clock and the process interfaces bridge the global and the local
clock to ensure correct functionality of the processes. We formally model the fam-
ily of protocols that we propose and verify them for latency equivalence with a
corresponding synchronous system.

GALS systems, which are a more general approach than the pure LIP, have
been subject of research in Polychony as well. In [TG05] and [LTL03] the proper-
ties endochrony and endo-isochrony are presented. These express precisely what
is needed to natively model GALS architectures. Endochrony as defined in the
Polychrony context, means that, given an external (asynchronous) stimulation of
its inputs, it still exhibits synchronous behavior. In other words, an endochronous
process can be stalled without changing its behavior. This is exactly the class
of processes that is required for the application of LI techniques, they are also
called stallable or patient processes. The property of endo-isochrony allows for
the compositional design of distributed processes. It shows that a correct (i.e.
flow preserving) refinement of a GALS specification on a distributed architecture
can only consist in the substitution of resynchronization clocks between the com-
ponents of the architecture. This has been shown by Pascal Aubry [Aub97, AL96]

168 Validating Latency Insensitive Protocols

and implemented in the polychrony platform.

15.1.2 Spin

SPIN [Hol03b] is a model checker used extensively for formal verification of sys-
tems. SPIN is used to trace logical design errors and to check the consistency
of the specification. Its basic building blocks include asynchronous processes,
message channels, synchronizing statements, and structured data. We use these
basic blocks to write synchronous models. The communication is done through
global variables. Since the processes run asynchronously in SPIN, we synchronize
the execution of all processes with a central clock controller in order to make
our model behave like a synchronous system. The execution of each component
depends on a flag set by the clock controller, which is reset by the component at
the end of its execution. The clock controller then waits for all components to
finish execution before it starts the next cycle. As in a real synchronous system,
the duration of a cycle (i.e. the maximum system frequency) is determined by
the slowest component.

15.2 Contributions

The main contributions of this chapter are as follows:

• Formal modeling and validation of existing latency insensitive protocols.

• New refinement-based approach to single-clock latency insensitive systems.

• Formal modeling and validation of our new approach. New approach to
latency insensitive systems for multi-clock systems.

• Formal modeling and validation of the multi-clock latency insensitive sys-
tem.

15.3 Methodology

15.3.1 Carloni’s Latency Insensitive Protocol

In the LI approach of Carloni et al each process is encapsulated in a wrapper
(called ”shell”) that is forming the interface to other shells. Logic blocks called
relay stations are placed along the wires that are longer than the signal prop-
agation distance during one clock cycle. These relay stations work as pipeline
blocks to send data from one shell to another over a long wire. The shell reads all
incoming values, filters out empty events, and feeds the process with valid input

Methodology 169

events. If any input signal does not have a data available, the process is stalled
until all input signals are present. When the process completes computation,
the shell writes events to the output wires, but only if the respective connected
component is accepting events.

Equalizer

A

B

C

stall

stall

stall

s1

s2

s3

s1’

s2’

s3’

Figure 15.1: Equalizer Example

We present our LI systems based on this approach. So first we made a formal
model of the Carloni LIP. Figure 15.2 shows a block diagram of this model. In this
implementation we put all functionality of the wrapper into an equalizer process.
An equalizer is modeled such that it reads all the input events from the incoming
signals. An input is considered only when it is associated with an informative
event. In informative event is an event that carries effective information. An
informative event is an event that does not carry information. This happens for
example when a clock tick occurs but no new value of the signal has arrived since
the last clock tick. The equalizer only forwards data when all its input signals
provide informative events. If an input signal sends an absent event in one cycle,
the equalizer sends a stall signal via a feedback to all processes that had sent an
informative event and it suspends the execution of other processes. When the
process itself is disabled by its equalizer, it is producing τ events at its outputs,
therefore causing the components before to wait until it can resume operation.

Let us consider an example of an equalizer and three processes: A, B, C
(shown in Figure 15.1). Each of the processes connect to the equalizer with sig-
nals s1, s2, s3. Also the equalizer outputs stall signals stallA, stallB, stallC to the
respective processes. Let us assume that processes B and C produce informative
events whereas process A outputs an absent event. In this scenario, the equalizer
will set stallB and stallC signals to stall the processes B and C in the next cycle
and output absent events on s′1, s

′
2, s

′
3. Once it receives an informative event on

s1, it will remove the stalls that were set and produce the corresponding outputs.

170 Validating Latency Insensitive Protocols

 relay station P Q EqP EqQ

 clock

 = stall signals

Figure 15.2: LI system proposed by Carloni

The equalizer modeled in the LI implementation also consists of a stall signal
generator that connects to the actual process. An example of this LI approach
is shown in Figure 15.2. In the example, there are two processes P and Q that
are encapsulated in wrappers. The process P has two inputs, one external input
and the other is a feedback from the process Q. The shell of process P reads
the data from its inputs and performs some computation and sends an output
to Q via a relay station. The process Q has two outputs. One is an external
output and the other one connects to the input of process P . For simplicity, this
connection is considered as a short wire, not necessitating a repeater. The setup
is as follows: EqP and EqQ are the equalizers of the corresponding processes.
The global clock is connected to all the processes. There is a delay of two cycles
on the interconnection between shell P and shell Q. Therefore, one relay station
is placed on the interconnect to permit successful transfer of data from process
P to process Q. The solid arrows denote the transfer of values where as the
dotted lines denote the transmission of events. Each process has enable signals
set at the next process station because if a process is not ready to accept data,
it can disable the previous processes to stop them from producing more tokens.
This feedback mechanism is preventing the usage of infinite buffers. Note that
we assume that processes considered here are functions and hence deterministic
and they are monotonic as well.

15.3.2 Eliminating Relay Stations

First step to generalize the original LI approach is to eliminate the need for relay
stations. There are several advantages to this. First of all, even though we
increase the size of certain elements by adding the LIP interface, we reduce the
number of elements compared to Carloni, which simplifies routing and placement.

Methodology 171

Also, we reduce the process of re-iterating over the routing and placement after
estimating the actual delays since we do not have to insert new components in
between wires for long interconnections.

The basic idea of our approach is that if a event between two components
takes two clock cycles, we only send one value every second clock cycle thereby
adapting the communication speed between components to their distance. An
outgoing interface takes care of this restriction, and stalls the sending component
whenever it delivers values too fast.

While this eliminates all relay stations, it however slows down the system
significantly due to an increasing number of stalls. We eliminate this slowdown
by additional communication lines. The number of interconnects needed depend
on the interconnect delay. For example, if there is an interconnect delay of n
cycles, then n interconnects are placed in-between the processes. Note that in
most cases n is in the range of 2 or 3. These additional wires an extra cost, but in
modern processes it is not very expensive to add parallel wires. Only in rare cases
of very sparse communication does it make sense to use a LI implementation for
more than three cycle distances, since stalling is bound to slow down the rest of
the system otherwise.

 (2-cycle delay)

 P EqP

 clock

 = stall signals

 splitter Q EqQ merger

Figure 15.3: LI system without relay stations

To ensure that the events are correctly transferred from one process to an-
other through long interconnects, we add extra interconnects that are bounded
by a splitter on the source and a merger on the sink. The splitter is imple-
mented at the output of a process, and it transfers events on the corresponding
interconnect. The splitter only puts one event on one of the output intercon-
nects and absent events are placed on the rest of the signals at a particular time
stamp. Complementary to the splitter, we implement a component that is able to
merge multiple inputs into one signal depending on their availability. This merger
reads the corresponding events from these interconnects based on the placement

172 Validating Latency Insensitive Protocols

of events by the splitter. For each long interconnect in our LI implementation we
need a splitter merger combination, that means we insert a splitter on one end
and a merger on the other end.

Figure 15.3 shows the structure of this implementation now avoiding the use
of relay stations by using splitter and merger processes attached to the respective
components. Each component still has an equalizer for the inputs, however on the
output side, long interconnects are connected by the bridge. The throughput of
the system is exactly the same as the throughput of a system with relay stations.

15.3.3 Components with Different Clocks

An LI system as defined by Carloni is still a synchronous system where all com-
ponents are connected to the same clock and work with the same speed. We
generalize this definition towards a multi-clock implementation where we allow
components with different clocks connected via arbitrarily long wires. At this
time, however, we are only permitting the use of components with defined, ra-
tional clock relations. This approach therefore makes it possible to connect com-
ponents where one is working with a clock three times faster than the other one,
or where the ratio of their clocks is 13:17. The global clock is always the fastest
clock in the system, and will have a defined rational relation with the clock of
any component. As before, we assume that each process is reading the inputs
during the first half of the clock cycle, and writes the outputs during the second
half of the clock cycle. This way we are avoiding any read/write conflicts. In
order to support systems with multiple clocks we have to modify the equalizer
and the merge to take into account different clock ratios. The equalizer now has
the information about the clock ratio of corresponding process in relation to the
global clock. This is to make sure that the equalizer delivers input values to the
system at the rate that it expects them. The process does its processing and in
the write phase writes a value to its outputs. This value is read by the Splitter
which now also knows about the speed of the attached process. As before, it
also knows about the distance to the connected components, however it does not
have to know anything about the clock speed of the connected components. The
protocol is taking this into account implicitly. This is also why the merger process
is unchanged from the single clock version. The merger is still merging together
signals from multiple inputs, depending on their availability. The merger always
works on the main system clock so for its task it does not have to know anything
about the actual clock of the process. The equalizer that is in between is taking
care of that part.

Figure 15.4 shows the multi-clock LI implementation of the system. The main
processes run based on the local clocks, whereas, the interfaces of the processes
run based on the global clock. The basic blocks of the module are the same as

Methodology 173

 (2-cycle delay) P EqP

 clock

 = stall signals

 Q EqQ
 merger

 n-
clock

 m-
clock multi multimulti

splitter

 m-clock n-clock

Figure 15.4: LI implementation with different clocks

shown in the previous implementations. Each process has an extended equalizer
and an extended splitter. In the read phase of each process, the data is read
from extended equalizer. In the writing phase of the process, the data is written
on the signals read by the splitter. On long interconnects, the extended splitter
controls the writing of the values on its signals

15.3.4 Verification of LI Protocols

To ensure that all members of this family of LIPs are functionally correct, we
check for their latency equivalence with a corresponding synchronous system. By
latency equivalence, we mean that all the values corresponding to the same set of
informative events must be equal. We model the two systems in SPIN and feed
the same sequence of tokens to the synchronous model as well as the LI model,
and compare the output tokens to be equal. The setup for verification of the two
systems is shown in Figure 15.5.

The figure shows that the same input is fed into both systems. In order to
test for all cases, we used a random generator giving the same sequence of values
to both the systems. The corresponding processes of both the system perform
the same computation. The output of the systems is fed to the Comparator. The
Comparator is a process that embeds an equalizer that takes the inputs from
the signals of the two implementations and has an assertion that checks that the
values read are equal at every clock tick. This assertion ensures that the values
received at the output are equal. Verification to check for the latency equivalence
was done for LIP with relay station and synchronous model, LIP without relay
station and components with same clock, and finally LIP without relay station
that permit the use of components with different clocks but with a known clock
ratio. For verification of the latency equivalence for this LIP, various different

174 Validating Latency Insensitive Protocols

Input Signal

Synchronous System

LI System

Comparator
Result

Figure 15.5: Verification

ratios for the clocks were taken into account.

15.4 Subsequent Work

This work has been continued mainly in the FERMAT lab of Virginia Tech by
Sandeep Shukla and his students Syed Suhaib and Deepak Mathaikutty. They
added two main contributions to this work, the first one being an effort of for-
malization, that is to make the understanding of different terminologies in LIPs
unequivocal. The second addition is the implementation of a functional program-
ming framework, that permits to build and validate LIP models.

Formalization In order to be able to completely rely on the tools and proto-
cols offered by a latency insensitive methodology, it is important that everyone
is understanding the exact same thing. This is only possible through rigorous
formalization of terminology. In [SMBS06] we find formal definitions of terms
and processes such as splitter, merger, and equalizer in order to clarify what
exactly they are performing.

Functional Language Framework Formally verifying protocols with a model
checker such as SPIN is giving definitive answers about the correct functioning of
a protocol for the entire state space, however it is sometimes not easy to correctly
describe a system in SPIN. More importantly, complex protocols are getting diffi-
cult to verify with a model checker since the state space is growing exponentially
with the size of the model, and processors and memory of available machines
set a limit to the complexity, which is difficult to overcome. Even if verification
finishes in a couple of hours, debugging and modifications are getting extremely

Summary 175

expensive as each and every small modification necessitates the reverification of
the model.

In order to overcome this Syed Suhaib et al. developed a functional program-
ming framework, that gives a simulation based approach to the validation of LI
protocols. While this is not matching a formal model checker for correctness,
it scales much better and can be used to complement a model checking based
approach. Functional languages perform computation by function application,
and therefore provide an abstract and elegant way to express computation. Ex-
periments show, that SML is quite apt for the modeling of LIP models as many
of the definitions can be easily mapped to recursive functions.

15.5 Summary

In this chapter, we propose a framework for the validation of LI systems. The
LI systems along with their synchronous idealization can be modeled together
and checked for latency equivalence. We show techniques for validation using our
framework. We model the entire framework in PROMELA and formally verify
using the SPIN model checker. The latency equivalence is expressed as a formal
property and verified for equivalence by a direct comparison of the outputs of the
original system and the LI system. A possible extension would be to modify the LI
protocols to GALS system that contain system components that are completely
asynchronous, without any (known) relation between their respective clocks.

176 Validating Latency Insensitive Protocols

Conclusion

The work presented in this document has been performed in the ESPRESSO
team of INRIA at IRISA and during several visits at the FERMAT lab of Virginia
Polytechnic Institute and State University. Our main interest is to show how the
design of embedded systems in general can benefit from the use of formal methods.
We illustrate this with the help of several examples addressing difficulties and use
cases in a CoDesign flow.

Automated generation of formal models. There are several tracks leading
to this goal. One possibility is to automatically build a formal description based
on nonformal system models. This is to satisfy an important condition for the
widespread adoption of formal methods in the general purpose design flow of
embedded systems. The idea is to hide the complexity of formal methods to the
user, i.e. the engineers, while still drawing a maximum of benefit from the clear
definitions and formal toolsets. For our work on the automated construction of
formal models we use SystemC as the language of design entry. The actual work
consists in three parts: (i) The definition of a methodology to infer behavioral
types from SystemC modules, (ii) a case study that puts this theory to practice
and implements the actual toolflow, and (iii) the design of a tool for the extraction
of structural information from SystemC in order to preserve the structure of the
models.

The definition of the theory for the behavioral type inference is a first im-
portant step. Based on the iSTS algebra proposed in [TG04] we represent the
behavior of a program by a type or proposition. In order to be able to make the
transition to SystemC, we define a formal syntax for a subset of the language.
With the help of this formal syntax, behavioral types can be inferred from non-
formal SystemC components. After the definition of the inference rules, we make
the connection to the POLYCHRONY framework by defining a translation from
the iSTS behavioral type system into SIGNAL.

In a second step we try to put this theory to work. We identify tools that help
in implementing this process. We use the Static Single Assignment (SSA) as the
central format for the process. SSA has a straightforward transformation into
SIGNAL and is the intermediate format of the GCC. Therefore GCC can be used

177

178 Validating Latency Insensitive Protocols

to translate from SystemC into SSA. We then only have to transform the SSA
into SIGNAL following the previously defined transitions. A small case study of
an FIR filter design exemplifies the whole transformation process and illustrates
how the tools are being used. We also show how static and dynamic properties
of the model can be verified with the help of the model checker SIGALI. Finally
we demonstrate how the models can be abstracted in order reduce complexity,
which is important for the verification of large models.

The model resulting of such a transformation does, however, not retain the
structure of the original design. This is an important limitation as for large
models it is difficult to keep the overview and track errors back to the source.
In order to eliminate this concern, we extend the methodology in a third step
to extract the structural information from the existing system description first,
and transform this structure into the desired target formalism. Then each of the
module behaviors can be transformed separately in order to fill in the empty pro-
cess declarations of the formal structure. We describe a methodology that spans
the whole process, starting from a structured SystemC program to an equally
structured SIGNAL description. The effort of parsing SystemC is minimized by
the smart use of open source tools such as Doxygen, the Xerces XML parser, and
GCC. The separate transformation of structure and behavior results in a formal
model that on the one hand contains the behavioral detail needed in order to
perform desired formal checks, and on the other hand it preserves the control
structure of the original model, enabling an easier backtracing of errors, a mod-
ular component reuse, and the compiler can do more optimizations for example
for scheduling. Beyond this, the structural information obtained can be used for
plenty of other applications. We show with some examples how easily this can be
exploited for other uses such as design visualization or automated test generation.
The front end part of the implementation has been made available as an open
source project, so that it can be easily used and modified by others.

Incremental model building. Another possibility for the use of formal meth-
ods in the design flow of embedded systems is to start with a formal model in
the first place. As this allows specifications to be captured much more clearly
and unequivocally, this is by definition a good way to start a system description.
However starting off with a formal model also holds many hazards and pitfalls
that have to do for example with the nonintuitive understanding of formal ex-
pressions and the difficulty to keep track of the size of the state space of the
generated model. We present a methodology that tries to simplify the process
of formal model building. It borrows techniques from extreme programming to
incrementally build formal models along with the associated formal tests. To
incrementally build a model, the initial specification is cut down into small self
contained parts of the functionality. We start by formally modeling one of these

Summary 179

functional blocks and at the same time write one or several formal properties that
verify it. After model checking that the model satisfies these properties, the other
functional blocks are added one by one, each time verifying if the model satisfies
the corresponding formal properties as well as all the previous ones. The result
is a verified formal model containing all of the initial specification and a set of
corresponding formal properties. As the model is verified from the beginning and
all along the design process, errors are detected earlier and big leaps in the state
space are detected at the source and can then possibly be avoided or reduced.

Latency insensitive protocols. With the growing complexity of embedded
systems comes the problem that for the integration on chip, connecting wires
between components can get longer than allowed for a desired processing speed.
One method to go beyond this limit is to insert buffers along these communication
wires and add a certain logic that takes care of the missing values and additional
delays. This logic is not easy to produce, and may induce major changes in
the design of the concerned components or the complete system architecture.
The theory of latency insensitive protocols established ways that permit the au-
tomated generation of protocol interfaces where needed in the design assuming
all components fulfill certain conditions. We present a way of how to formally
validate the result of such a conversion against a corresponding system without
delays on the wires. We show a method of how existing LIPs can be formally
modeled and verified. This method is then applied successfully to the protocol
proposed by Carloni by verifying it in an easy to follow test setup. We then intro-
duce a modified protocol that removes the need for repeater stations along long
wires without losing system performance and verify its correctness again with our
formal setup.

Future Work

The work present in this document describes a methodology with which it is pos-
sible to extract formal behavioral types from SystemC descriptions. The possible
benefits of such a project are clear, however, the real power of this approach can
only be demonstrated with a tool that can perform this task automatically on a
sufficiently large subset of the input language. At this point in time there are some
steps missing to this goal. While the automated extraction of structure and the
generation of the corresponding SIGNAL process skeletons is implemented and
working, we are currently working on the automated transformation of the SSA
code to SIGNAL. Once the SSA code can be automatically translated, a SIGNAL
library has to be built that corresponds to the SystemC library in C++. This
library has to model all SystemC constructs such as sc_signal or sc_event or at

180 Validating Latency Insensitive Protocols

least a reasonably large subset of them. Some of these functions are available from
previous work [GGG06], but this will have to be completed and tested. In oder to
entirely reflect the original SystemC design, the SystemC scheduler will also have
to be modeled in SIGNAL. What equally remains to be done is the integration of
the modular model generation with SystemCXML in order to automatically fill
the empty process definitions in the generated SIGNAL skeleton.

Once the automated type extraction is working, it will be interesting to see
how it scales with the size of the projects, and how it behaves for different types
of systems. As the SSA to SIGNAL translation is valid also for other languages
supported by a GCC front end such as Fortran, Java, and ADA, it would equally
be interesting to see how the behavioral type extraction would work for these
languages and how we can control simulation and verification performance by
using different levels of abstraction.

The work on incremental formal modeling shows that extreme programming
techniques can be used for the process of building formal models. The results are
encouraging and seem to indicate that building formal models incrementally is
faster and more reliable than using standard techniques. However, there is still
missing a representative study that examines the effects of this method in terms
of design time, performance, and quality for a number of projects. While such
an extensive study could be conceived with the cooperation of design companies,
it would require considerable resources and its outcome may largely depend on
the type of the projects and the experience of the designers. For extreme pro-
gramming, number of such studies have been attempted [SASB04, LWC04], but
despite its wide adaption there is no prevalent opinion to an empirical advan-
tage of the method [Lay04, LBB+02]. So for incremental formal modeling, as an
empirical study is far out, a next step would be its deployment in an industrial
environment, to get some feedback from developers and project managers.

The verification of latency insensitive protocols is an important subject as easy
to follow verification techniques are missing. A big advantage of the presented
technique is the transparency of the verification mechanism, however one concern
is the scaling of the method as for large models the verification state space is
getting unmanageable. More complex protocol implementations may become dif-
ficult or impossible to verify with this method. Another issue is that the formal
models for the protocols are not very intuitive to write, and that considerable
effort has to be put into correctly modeling one specific protocol implementa-
tion. The follow up work at Virginia Tech is addressing these concerns by adding
a functional verification framework. Modeling the protocols in a functional lan-
guage is much easier than building a model in Promela. Also, functional programs
scale better, such that even complex implementations do not create difficulties in
terms of verification time or memory usage. Functional languages obviously do
not allow for formal verification, so in a further step we could imagine a mixture

Summary 181

of the two approaches. While the system level view of the protocol can more
efficiently be modeled in a functional framework, core functionalities of the pro-
tocols could be modeled in a formal language. This can be done in a way such
that the combination of the two assures the core functionality of the protocol as
well as the high level functionality.

182 Validating Latency Insensitive Protocols

Bibliography

[ABL95] T. P. Amagbegnon, Loic Besnard, and Paul Le Guernic. Imple-
mentation of the data-flow synchronous language signal. In Confer-
ence on Programming Language Design and Implementation. ACM
Press, 1995.

[AL96] P. Aubry and P. Le Guernic. On the desynchronization of syn-
chronous applications. In Proceedings of the 11th International
Conference on Systems Engineering, ICSE’96, Las Vegas, Nevada
(USA), July 1996. University of Nevada.

[Ass06] Semiconductor Industry Association. International tech-
nology roadmap for semiconductors (ITRS) 2005 edition.
http://www.itrs.net/Common/2005ITRS/Home2005.htm, Jan-
uary 2006.

[Aub97] P. Aubry. Mises en oeuvre distribuées de programmes synchrones.
PhD thesis, Université de Rennes 1, IFSIC, October 1997.

[BDBS99] E.A. Boiten, J. Derrick, H. Bowman, and M.W.A. Steen. Construc-
tive consistency checking for partial specification in Z. Science of
Computer Programming, 35(1):29–75, September 1999.

[Bec00] Kent Beck. Extreme Programming explained: Embrace change. Ad-
dison Wesley, 2000.

[Ber00] G. Berry. The Foundations of Esterel. MIT Press, 2000. Editors:
G. Plotkin, C. Stirling and M. Tofte.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming
language: design, semantics, implementation. Science of Computer
Programming, 19:87–152, November 1992.

[BGJ+97] F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich,
B. Tabbara, M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-

183

184 Bibliography

Vincentelli, and K. Suzuki. Hardware-Software Co-Design of Em-
bedded Systems, The POLIS Approach. Kluwer Academic Publish-
ers, April 1997.

[BH95a] J. P. Bowen and M. G. Hinchey. Seven more myths of formal meth-
ods. IEEE Software, 12(4):34–41, July 1995. Previously available
as University of Cambridge Computer Laboratory Technical Report
357, December 1994 and Oxford University Computing Laboratory
Technical Report PRG-TR-7-94, June 1994.

[BH95b] J. P. Bowen and M. G. Hinchey. Ten commandments of formal
methods. IEEE Computer, 28(4):56–63, 1995.

[BHLM94] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messer-
schmitt. Ptolemy: A framework for simulating and prototyping het-
erogenous systems. Int. Journal in Computer Simulation, 4(2):155–
182, April 1994.

[BLJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot.
Synchronous programming with events and relations: the SIGNAL
language and its semantics. Science of Computer Programming,
16(2):103–149, 1991.

[BM02] Luca Benini and Giovanni De Micheli. Networks on chips: A new
soc paradigm. Computer, 35(1):70–78, 2002.

[BMPS04] David Berner, D. A. Mathaikutty, H. D. Patel, and S. K. Shukla.
FERMAT’s SystemC Parser. http://systemcxml.sourceforge.net,
2004.

[BPM+05a] David Berner, Hiren Patel, Deepak Mathaikutty, Sandeep Shukla,
and Jean-Pierre Talpin. SystemCXML: An extensible SystemC
front end using XML. Technical Report 2005-06, Virginia Polytech-
nic Institute, FERMAT Lab, Blacksburg, VA, USA, June 2005.

[BPM+05b] David Berner, Hiren Patel, Deepak Mathaikutty, Jean-Pierre
Talpin, and Sandeep Shukla. SystemCXML: An extensible Sys-
temC front end using XML. In Proceedings of the forum on
specification and design languages (FDL), Lausanne, Switzerland,
September 2005.

[BSSH05] David Berner, Syed Suhaib, Sandeep Shukla, and Harry Foster.
XFM: Extreme Formal Method for Capturing Formal Specification
into Abstract Models. Technical Report 2003-08, FERMAT Lab
Virginia Tech, Blacksburg, VA USA, December 2005.

Bibliography 185

[BSST04] David Berner, Syed Suhaib, Sandeep Kumar Shukla, and Jean-
Pierre Talpin. Formal Methods and Models for System Design,
chapter Capturing Formal Specification into Abstract Models.
Kluwer Academic Publishers, October 2004.

[BST92] David Becker, Raj K. Singh, and Stephen G. Tell. An engineer-
ing environment for hardware/software co-simulation. In Design
Automation Conference, pages 129–134, 1992.

[BTSG04] David Berner, Jean-Pierre Talpin, Sandeep Shukla, and Paul Le
Guernic. Modular design through component abstraction. In In-
ternational Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), pages 202–211, Washington DC,
USA, September 2004.

[BWH+03] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno,
Claudio Passerone, and Alberto L. Sangiovanni-Vincentelli.
Metropolis: An integrated electronic system design environment.
IEEE Computer, 36(4):45–52, 2003.

[Cad05] Cadence Design Systems Inc. Incisive unified simulator. Datasheet
5418C 04/05, June 2005.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Trans. on
Programming Languages and Systems, 13(4):451–490, 1991.

[CM04] M. Casu and L. Macchiarulo. A new approach to latency insensitive
design. In Design Automation Conference, 2004.

[CMA02] Srihari Cadambi, Chandra S Mulpuri, and Pranav N Ashar. A fast,
inexpensive and scalable hardware acceleration technique for func-
tional simulation. In DAC ’02: Proceedings of the 39th conference
on Design automation, pages 570–575, New York, NY, USA, 2002.
ACM Press.

[CMSSV99] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and
Alberto L. Sangiovanni-Vincentelli. A methodology for correct-by-
construction latency insensitive design. In ICCAD, pages 309–315,
San Jose, CA, USA, November 1999.

[CMSV99] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Latency insensitive protocols. In 11th International Conference on

186 Bibliography

Computer-Aided Verification, volume 1633, pages 123–133, Trento,
Italy, July 1999. Springer Verlag.

[CMSV01] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The the-
ory of latency insensitive design. IEEE Transactions on Computer
Aided Design of Integrated Circuits and System, 20(9):1059–1076,
2001.

[Cor] Open Cores. Free open source IP cores and chip design.
http://www.opencores.org.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface theories for
component-based design. In First International Workshop on Em-
bedded Software, pages pp. 148–165. Lecture Notes in Computer
Science 2211, Springer-Verlag, 2001.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[DSG03] Frederic Doucet, Sandeep Shukla, and Rajesh Gupta. Typing ab-
stractions and management in a component framework. In Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE
Press, January 2003.

[EAH05] Christian J. Eibl, Carsten Albrecht, and Rainer Hagenau. gSysC:
A Graphical Front End for SystemC. In Proceedings 19th European
Conference on Modeling and Simulation (ECMS), Riga, Latvia,
June 2005.

[FE] Edison Design Group C++ Front-End. Edison design group c++
front-end. Website: http://edg.com/cpp.html.

[Fou] The Apache Software Foundation. Xerces C++ validating XML
Parser. Website: http://xml.apache.org/xerces-c/.

[Fre04a] Free Software Foundation. The GCC tree-ssa documentation.
http://gcc.gnu.org/onlinedocs/gccint/Tree-SSA.html, 2004.

[Fre04b] Free Software Foundation. The GNU compiler collection.
http://gcc.gnu.org, 2004.

[FSG03] Frederic Doucet, S. Shukla, and R. Gupta. Introspection in System-
Level Language Frameworks: Meta-level vs. Integrated. In Design
and Test Automation in Europe, 2003.

Bibliography 187

[GCNCM92] Rajesh Kumar Gupta, Jr. C. N. Coelho, and Giovanni De Micheli.
Synthesis and simulation of digital systems containing interacting
hardware and software components. In DAC ’92: Proceedings of the
29th ACM/IEEE conference on Design automation, pages 225–230,
Los Alamitos, CA, USA, 1992. IEEE Computer Society Press.

[GG02] Abdoulaye Gamatié and Thierry Gautier. Modeling of modular
avionics architectures using the synchronous language. In Pro-
ceedings of the 14th. Euromicro Conference on Real-Time Systems,
work-in-progress session. IEEE Press, 2002.

[GGG06] Abdoulaye Gamatié, Thierry Gautier, and Paul Le Guernic. Syn-
chronous design of avionic applications based on model refinements.
Journal of Embedded Computing (JEC), 2006. IOS Press (to ap-
pear).

[GKNV93] Emden R. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A tech-
nique for drawing directed graphs. IEEE Transactions on Software
Engineering, 19(3):214–230, March 1993.

[GLLA03] Daniel Große, Rolf Drechsler Lothar, Linhard, and Gerhard Angst.
Efficient Automatic Visualization of SystemC Designs. In Proceed-
ings of the Forum on specification and design languages (FDL),
Frankfurt, Germany, September 2003.

[GLMS02] T. Groetker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, 2002.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visual-
ization system and its applications to software engineering. Softw.
Pract. Exper., 30(11):1203–1233, 2000.

[GNJ+96] Gopi Ganapathy, Ram Narayan, Glenn Jorden, Denzil Fernandez,
Ming Wang, and Jim Nishimura. Hardware emulation for functional
verification of k5. In DAC ’96: Proceedings of the 33rd annual
conference on Design automation, pages 315–318, New York, NY,
USA, 1996. ACM Press.

[Gre] GreenSocs. Pinapa: A SystemC front-end. Website:
http://greensocs.sourceforge.net/.

[GZD+00] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao. SpecC:
Specification Language and Methodology. Kluwer Academic Pub-
lishers, January 2000.

188 Bibliography

[Hal90] A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–
19, September 1990.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language Lustre. In Proceedings
of the IEEE, vol.79(9), pages 1305–1320, September 1991.

[HDE+93] Laurie J. Hendren, Chris Donawa, Maryam Emami, Guang R. Gao,
Justiani, and Bhama Sridharan. Designing the McCAT Compiler
Based on a Family of Structured Intermediate Representations. In
Proceedings of the 5th International Workshop on Languages and
Compilers for Parallel Computing, pages 406–420. Springer-Verlag,
LNCS 757, 1993.

[Hen00] Jesper G. Henriksen. Logics and Automata for Verification - Ex-
pressiveness and Decidability Issues. PhD thesis, Basic Research in
Computer Science (BRICS), University of Aarhus, Denmark, June
2000.

[Hol03a] Gerhard J. Holzmann. The SPIN Model Checker: Primer and Ref-
erence Manual. Addison Wesley, Boston, MA, September 2003.

[Hol03b] Gerhard J. Holzmann. The SPIN Model Checker: Primer and Ref-
erence Manual. Addison Wesley, Boston, MA, September 2003.

[HPG02] John L. Hennessy, David A. Patterson, and David Goldberg. Com-
puter Architecture: A Quantitative Approach. Morgan Kaufmann,
San Mateo, CA, 3rd edition, may 2002.

[IRI] IRISA, project ESPRESSO. The polychrony workbench.
http://www.irisa.fr/espresso/Polychrony.

[JVBEK91] Jr. Jack V. Briner, John L. Ellis, and Gershon Kedem. Breaking the
barrier of parallel simulation of digital systems. In DAC ’91: Pro-
ceedings of the 28th conference on ACM/IEEE design automation,
pages 223–226, New York, NY, USA, 1991. ACM Press.

[Klo05] Debra Klopfenstein. Verifying large models in rtl simulation.
http://www.eetimes.com/showArticle.jhtml?articleID=172901509,
October 2005.

[KTBB06] Hamoudi Kalla, Jean-Pierre Talpin, David Berner, and Loic
Besnard. Automated translation of c/c++ models into a syn-
chronous formalism. In IEEE International Conference and Work-

Bibliography 189

shop on the Engineering of Computer Based Systems (ECBS), Pots-
dam, Germany, March 2006.

[LAN+03] J. Lapalme, E. M. Aboulhamid, G. Nicolescu, L. Charest, F. R.
Boyer, J. P. David, and G. Bois. .NET Framework – A Solution for
the Next Generation Tools for System-Level Modeling and Simula-
tion. In Design and Test Automation in Europe, 2003.

[Lay04] Lucas Layman. Empirical investigation of the impact of extreme
programming practices on software projects. In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications,
pages 328–329, New York, NY, USA, 2004. ACM Press.

[LBB+02] Mikael Lindvall, Victor R. Basili, Barry W. Boehm, Patricia Costa,
Kathleen Dangle, Forrest Shull, Roseanne Tesoriero Tvedt, Lau-
rie A. Williams, and Marvin V. Zelkowitz. Empirical findings in ag-
ile methods. In Don Wells and Laurie A. Williams, editors, XP/Ag-
ile Universe, volume 2418 of Lecture Notes in Computer Science,
pages 197–207. Springer, 2002.

[LL98] Bilung Lee and Edward A. Lee. Hierarchical concurrent finite state
machines in ptolemy. In International Conference on Application of
Concurrency to System Design (ACSD), pages 34–40. IEEE Com-
puter Society, 1998.

[LTL03] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christphe Le Lann.
Polychrony for system design. Journal of Circuits, Systems and
Computers, 12(1), April 2003.

[LW98] Jacob Lehraum and Bill Weinberg. Ide evolution continues beyond
eclipse. http://www.eetimes.com/, June 1998.

[LWC04] Lucas Layman, Laurie A. Williams, and Lynn Cunningham. Ex-
ploring extreme programming in context: An industrial case study.
In Agile Development Conference, pages 32–41. IEEE Computer
Society, 2004.

[LX01] Edward A. Lee and Yuhong Xiong. System-level types for
component-based design. In EMSOFT ’01: Proceedings of the
First International Workshop on Embedded Software, pages 237–
253, London, UK, 2001. Springer-Verlag.

190 Bibliography

[MBLL00] H. Marchand, P. Bournai, Michel Le Borgne, and Paul Le Guernic.
Synthesis of discrete-event controllers based on the signal environ-
ment. Discrete Event Dynamic System: Theory and Applications,
10(4):325–346, October 2000.

[McM93] Ken McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

[Mer03] Jason Merrill. GENERIC and GIMPLE: A new tree representation
for entire functions. In GCC Developers Summit, Ottawa, Canada,
May 2003.

[MMMC05a] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
LusSy: A toolbox for the analysis of Systems-on-a-Chip at the
transactional level. In International Conference on Application of
Concurrency to System Design (ACSD), pages 26–35. IEEE Com-
puter Society, 2005.

[MMMC05b] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
Pinapa: an extraction tool for SystemC descriptions of systems-on-
a-chip. In EMSOFT ’05: Proceedings of the 5th ACM international
conference on Embedded software, pages 317–324, New York, NY,
USA, 2005. ACM Press.

[Moy05] Mathieu Moy. Techniques and Tools for the Verification of Systems-
on-a-Chip at the Transaction Level. PhD thesis, Institut National
Polytechnique de Grenoble, Grenoble, France, December 2005.

[Nai02] Ravi Nair. Effect of increasing chip density on the evolution of
computer architectures. IBM Journal of Research and Develop-
ment, 46(2-3):223–234, 2002.

[NTLG99] David Nowak, Jean-Pierre Talpin, and Paul Le Guernic. Syn-
chronous structures. In Jos C. M. Baeten and Sjouke Mauw, editors,
CONCUR ’99: Concurrency Theory, 10th International Confer-
ence, Eindhoven, The Netherlands, August 24-27, 1999, Proceed-
ings, volume 1664 of Lecture Notes in Computer Science, pages
494–509, Eindhoven, The Netherlands, August 1999. Springer.

[Odd01] Denis Oddoux. LTL 2 BA : fast algorithm from LTL to buchi
automata.
http://www.liafa.jussieu.fr/˜oddoux/ltl2ba/, 2001.

[OMG] OMG. OMG CORBA. http://www.corba.org/.

Bibliography 191

[OSC] The Open SystemC Initiative OSCI. SystemC Reference Manual.
Website: http://www.systemc.org.

[PBMS04] Hiren Patel, David Berner, Deepak Mathaikutty, and Sandeep
Shukla. Introspective-SystemC: Reflection and introspection in Sys-
temC. Technical Report 2004-22, Virginia Polytechnic Institute,
FERMAT Lab, December 2004.

[Pie05] Emmanuel Pietriga. Zgrviewer - a 2.5D graph visualizer for the
DOT language. http://zvtm.sourceforge.net/zgrviewer.html, 2005.

[PMBS06] Hiren D. Patel, Deepak A. Mathaikutty, David Berner, and
Sandeep Kumar Shukla. Carh: An introspective and service ori-
ented architecture for validation system level designs. To be pub-
lished in IEEE Transactions on CAD (TCAD), 2006.

[PSS98] Amir Pnueli, Natarajan Shankar, and Eli Singerman. Fair syn-
chronous transition systems and their liveness proofs. In Anders P.
Ravn and Hans Rischel, editors, FTRTFT, volume 1486 of Lecture
Notes in Computer Science, pages 198–209. Springer, 1998.

[RR01] Sriram K. Rajamani and Jakob Rehof. A behavioral module sys-
tem for the pi-calculus. In Proceedings Static Analysis Symposium
(SAS’01), Paris, July 2001. Springer Verlag.

[SASB04] Panagiotis Sfetsos, Lefteris Angelis, Ioannis Stamelos, and Geor-
gios L. Bleris. Evaluating the extreme programming system - an
empirical study. In Jutta Eckstein and Hubert Baumeister, editors,
XP, volume 3092 of Lecture Notes in Computer Science, pages 227–
230. Springer, 2004.

[SBM+05] Syed Suhaib, David Berner, Deepak Mathaikutty, Jean-Pierre
Talpin, and Sandeep Shukla. A functional programming frame-
work for latency insensitive protocol validation. In Proceedings of
the International Workshop on Formal Methods for Globally Asyn-
chronous Locally Synchronous Design (FMGALS), Verona, Italy,
July 2005.

[SMBS04] Syed Suhaib, Deepak Mathaikutty, David Berner, and Sandeep
Shukla. Extreme formal modeling for hardware models. In Proc.
of 5th International Workshop on Microprocessor Test and Verifi-
cation (MTV’04), Austin Texas, USA, September 2004.

192 Bibliography

[SMBS05] Syed Suhaib, Deepak Mathaikutty, David Berner, and Sandeep
Shukla. Validating families of latency insensitive protocols. In To
be published in Proceedings of the IEEE International High Level
Design Validation and Test Workshop (HLDVT), Napa Valley, Cal-
ifornia, USA, November 2005.

[SMBS06] Syed Suhaib, Deepak Mathaikutty, David Berner, and Sandeep
Shukla. Validating families of latency insensitive protocols. To be
published in IEEE Transactions on Computers (TCOMP), Special
Issue on Simulation-Based Validation, October 2006.

[SMSB05] Syed M. Suhaib, Deepak A. Mathaikutty, Sandeep K. Shukla, and
David Berner. Xfm: An incremental methodology for developing
formal models. ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES) Special Issue on Validation of Large Sys-
tems, 10(4):589–609, October 2005.

[Sny] Wilson Snyder. SystemPerl - a perl library for SystemC.
http://www.veripool.com/systemperl.html.

[SR98] Preston G. Smith and Donald G. Reinertsen. Developing Products
in Half the Time. John Wiley, New York, 1998.

[ST04] M. Singh and M. Theobald. Generalized latency-insensitive systems
for single-clock and multi-clock architectures. In Design, Automa-
tion and Test in Europe (DATE’04), 2004.

[Suh04] Syed Suhaib. XFM: An incremental methodology for developing
formal models. Master’s thesis, Virginia Polytechnic and State Uni-
versity, Blacksburg, Virginia USA, May 2004.

[SVMS96] Alberto L. Sangiovanni-Vincentelli, Patrick C. McGeer, and
Alexander Saldanha. Verification of electronic systems. In DAC
’96: Proceedings of the 33rd annual conference on Design automa-
tion, pages 106–111, New York, NY, USA, 1996. ACM Press.

[TBS+04a] Jean-Pierre Talpin, David Berner, Sandeep K. Shukla, Paul Le
Guernic, Abdoulaye Gamatié, and Rajesh Gupta. A behavioral
type inference system for compositional system-on-chip design. In
International Conference on Application of Concurrency to System
Design (ACSD), pages 47–56. IEEE Computer Society, 2004.

[TBS+04b] Jean-Pierre Talpin, David Berner, Sandeep Kumar Shukla, Ab-
doulaye Gamatié, Paul Le Guernic, and Rajesh Gupta. Formal

Bibliography 193

Methods and Models for System Design, chapter Behavioral Type
Inference for Compositional System Design. Kluwer Academic Pub-
lishers, October 2004.

[TG04] Jean-Pierre Talpin and Paul Le Guernic. Algebraic Theory for
Behavioral Type Inference, chapter Behavioral Type Inference for
Compositional System Design. Kluwer Academic Publishers, Oc-
tober 2004.

[TG05] Jean-Pierre Talpin and Paul Le Guernic. An algebraic theory for
behavioral modeling and protocol synthesis in system design. To
appear in Formal Methods in System Design. Special Issue on for-
mal methods for GALS design, 2005.

[TGB+03] Jean-Pierre Talpin, A. Gamatié, David Berner, Bruno Le Dez, and
Paul Le Guernic. Hard real-time implementation of embedded sys-
tems in java. In International Workshop on Scientific Engineering
of Distributed JAVA Applications (FIDJI), Lectures Notes in Com-
puter Science. Springer Verlag, November 2003.

[TGS+03] Jean-Pierre Talpin, Paul Le Guernic, Sandeep K. Shukla, Ra-
jesh K. Gupta, and Frederic Doucet. Polychrony for formal
refinement-checking in a system-level design methodology. In In-
ternational Conference on Application of Concurrency to System
Design (ACSD), pages 9–19. IEEE Computer Society, 2003.

[TLS+04] Jean-Pierre Talpin, Paul Le Guernic, Sandeep Kumar Shukla,
R. Gupta, and F. Doucet. Formal refinement checking in a system-
level design methodology. In Special Issue of Fundamenta Informat-
icae on Applications of Concurrency to System Design. IOS Press,
August 2004.

[TM91] D. Thomas and P. Moorby. The Verilog Hardware Description Lan-
guage. Kluwer Academic, 1991.

[VHD] VHDL. VHDL. Website: http://www.vhdl.org/.

[vHT] Dimitri van Heesch and The Doxygen Team. Doxygen, an auto-
mated code documentation system. http://www.doxygen.org.

[Wil03] Laurie Williams. The XP programmer - the few minutes program-
mer. IEEE Software, 20(3):16–20, May/June 2003.

[Win90] J. M. Wing. A specifier’s introduction to formal methods. IEEE
Computer, 23(9):8–26, September 1990.

194 Bibliography

[WK03] William A. Wood and William L. Kleb. Exploring XP for scientific
research. IEEE Software, 20(3):30–36, May/June 2003.

[YHP+97] Joon-Seo Yim, Yoon-Ho Hwang, Chang-Jae Park, Hoon Choi,
Woo-Seung Yang, Hun-Seung Oh, In-Cheol Park, and Chong-Min
Kyung. A c-based rtl design verification methodology for complex
microprocessor. In DAC ’97: Proceedings of the 34th annual con-
ference on Design automation, pages 83–88, New York, NY, USA,
1997. ACM Press.

List of Figures

1 Prédictions de la SIA pour le nombre de transistors dans des puces 10

1.1 Flot de conception conjointe . 14
1.2 Flot de conception conjointe modulaire 15
1.3 Flot de conception conjointe avec réutilisation 17

4.1 Traduction de modules SystemC en SIGNAL 28
4.2 Méthodologie pour la transformation de SystemC vers SIGNAL 29
4.3 Construction classique de modèles formels 30
4.4 La modélisation formelle itérative 31
4.5 Number of transistors on a chip predicted by the SIA 40

5.1 Simple codesign flow . 44
5.2 Modular codesign flow . 48
5.3 Codesign flow with IP integration 50

8.1 Specification of a counter modulo 2 64
8.2 Formal syntax of iSTS algebra 67
8.3 A behavior in the polychronous model of computation 68
8.4 Scheduling relations between simultaneous events 69
8.5 Relating synchronous behaviors by stretching. 70
8.6 Denotational semantics of clock expressions 71
8.7 Denotational semantics of propositions 72
8.8 Denotational semantics of propositions 72
8.9 Clock inference system . 74
8.10 Polychronous specification of a buffer 75
8.11 Clock analysis of the buffer . 76
8.12 Buffer code generation . 76
8.13 Signal syntax core . 77
8.14 From Signal to iSTS ddP ee . 78
8.15 From iSTS to Signal bbP cc . 78

9.1 Translation of a source program into static single assignment form 81

195

196 List of Figures

9.2 Propositional behavior of the SSA program 82
9.3 Static abstraction of the behavioral type 84
9.4 Abstract syntax for SystemC 86
9.5 Abstract syntax for SystemC programs in SSA form 86
9.6 Ones-counter method in SystemC 87
9.7 Ones-counter method in SSA 88
9.8 Type inference rules . 89
9.9 Type of the wait-notify protocol 91
9.10 Modular extension of the inference function to separate methods 92
9.11 Abstraction of the behavioral type of the while loop by a static

interface . 93
9.12 Behavioral types for modules 93
9.13 Type inference for declarations 94
9.14 Type inference for modules . 95
9.15 Embedding the intermediate representation in Signal 96
9.16 Signal type of the ones counter 97

11.1 Translation of SystemC modules into SIGNAL 109
11.2 Methodology for translating SystemC models into SIGNAL . . 110

12.1 Two connected components . 117
12.2 Structure of the FIR filter with testbench 120
12.3 SystemC and SSA code for the FIR core 122
12.4 Clock and scheduling relations for the FIR 123
12.5 Control flow of the FIR filter 124
12.6 Data Flow of the FIR . 124
12.7 Block view of the SIGNAL type for the FIR filter 125
12.8 Example of a formal property definition 128
12.9 Verification of Properties using Sigali 128
12.10 Abstract SIGNAL model . 130

13.1 Design Flow for the extraction 133
13.2 Examples of class declarations 133
13.3 Doxygen XML Representation 134
13.4 Main entities of the DTD . 136
13.5 Class diagram showing data structure 137
13.6 Example DOT code and resulting graph 139
13.7 Visualization of the extracted module hierarchy of a USB controller139
13.8 Interface of the module usb crc5 from the USB example 142
13.9 Testbench snippet in unconstRand mode for a pre-specified port 142
13.10 Testbench snippet in simpleRand mode for a pre-specified port 143
13.11 Testbench snippet in distRand mode for a pre-specified port . . 143

List of Figures 197

13.12 Snippet of the testbench showing the trace file creation 144

14.1 State of the art to capture a formal model 148
14.2 Capturing a formal model with XFM 149
14.3 Modeling process (a) and modeling result (b) 150
14.4 LTL operators . 154
14.5 LTL properties for traffic light 155
14.6 FSMs of traffic properties 1 (a), 2 (b), 3 (b) 155
14.7 Graph for traffic property 5 . 156
14.8 Promela code for pedestrian crossing 157
14.9 Cycles for different instruction types 157
14.10 PROMELA code for one single instruction 158
14.11 Graphs of pipeline properties 1 (a), 3 (b), and 4 (c) 158
14.12 Example LTL properties for the DLX pipeline 159
14.13 Pipeline automaton for one instruction 160
14.14 Structure of the DLX pipeline 161

15.1 Equalizer Example . 169
15.2 LI system proposed by Carloni 170
15.3 LI system without relay stations 171
15.4 LI implementation with different clocks 173
15.5 Verification . 174

Résumé

La modélisation du contenu des puces électroniques s’avère de plus en plus difficile
puisque le développement des outils et des méthodologies de modélisation n’a pas
su accompagner l’explosion de la complexité des systèmes. Les méthodes formelles
ont su démontrer dans les dernières années leurs capacités de prévention et de
détection d’erreurs durant les phases de modélisation. Malgré cela, leur utilisation
reste toujours restreinte à des domaines bien spécifiques comme le militaire ou
l’avionique en raison d’un manque de liens avec les méthodes existantes et la
difficulté de leur utilisation.

Dans ce document, nous essayons de montrer dans quelle mesure la conception
de systèmes embarqués peut profiter de l’utilisation de méthodes formelles. Pour
cela, nous proposons plusieurs approches qui démontrent comment l’utilisation
des méthodes formelles peut être intégrée dans la conception conjointe tout en
cachant - du moins en partie - leur complexité inhérente. Plus spécifiquement
nous définissons une méthodologie pour extraire des modèles formels à partir
de modèles non formels de systèmes embarqués. Une autre approche proposée
utilise les méthodes agiles dès le début du flot de conception pour faciliter la
construction de modèles formels à partir de spécifications. Cette méthodologie de
construction incrémentale produit des modèles formels correctes par construction
avec les propriétés formelles correspondantes.

Abstract

Designing electronic chips is becoming increasingly difficult as the modeling tools
and methodologies cannot keep up with the rise in system complexity. In the
recent past, formal methods have proved their capability of error detection and
prevention in the different phases of system modeling. However, due to their
complexity and a lack of integration with existing design methods, their use is
still restricted to specific domains such as avionics and military.

In this document we show how the design of embedded systems can benefit
of the use of formal methods. We give several examples on how formal methods
can be integrated in a co-design flow while hiding - at least to some extent - their
inherent complexity. More specifically we define a methodology to extract formal
models from non formal embedded system descriptions. Our approach separates
the extraction of the structure from the transformation of the behavior. Another
approach that we propose aims at the use of formal models early in the design
flow. It uses agile methods to facilitate the construction of formal models from
natural language specifications. The presented methodology for the incremental
building of formal models produces correct-by-construction models along with
the corresponding formal properties.

	 Part -- French Abstract
	Introduction
	Contributions principales

	Flot de conception conjointe
	L'approche modulaire
	Réutiliser c'est accélérer

	Pourquoi utiliser des méthodes formelles dans la conception conjointe?
	Assurer que la spécification soit complète
	Réduire le nombre d'erreurs dans la spécification
	Réduire le nombre d'erreurs dans l'implémentation
	Accélérer le développement, réduire les coûts
	Améliorer la fiabilité du système
	Prouver le respect de standards

	L'intégration de méthodes formelles dans la conception conjointe
	Transformation automatisée vers un langage formel
	La modélisation formelle itérative
	Validation de protocoles insensibles aux latences

	Mise en oeuvre
	Transformation de composants SystemC en SIGNAL
	Extraction d'informations structurelles de modèles SystemC
	Modélisation formelle itérative

	Conclusion

	 Part -- English Abstract
	Introduction
	Main Contributions

	Embedded System CoDesign Flow
	The Basic Design Flow
	Specification
	Implementation
	Synthesis

	The Modular Approach
	To Reuse Means to Accelerate

	Why use Formal Methods for CoDesign?
	Assure Completeness of Specification
	Reduce Specification Errors
	Reduce Errors in Implementation
	Speed up Development, Reduce Costs
	Improve System Reliability
	Prove the Adherence to Standards

	Integration of Formal Methods into the CoDesign Flow
	Automated Transformation into a Formal Language
	Extreme Formal Modeling
	Validation of Latency Insensitive Protocols

	 Part -- Formal Foundations
	Polychrony and SIGNAL
	An Algebraic Notation
	Formal Syntax
	Notational Conventions

	A Polychronous Model of Computation
	Scheduling Structure of Polychrony
	Synchronous Structure of Polychrony
	Denotational Semantics of the iSTS Algebra

	The SIGNAL Language
	Relating Polychronous Signals with Clocks
	Code Generation via Hierarchization
	Some More Concrete Syntax

	Translating iSTS into SIGNAL

	Behavioral Types for SystemC
	Example and Overview
	Static Single Assignment
	Propositional Behavior
	Static Abstraction
	Typed Modules
	Proof Obligations

	Formal Syntax of the SystemC Core
	Inference
	Completion of the State Logic
	Modular Extension to External Method Calls
	Static Interface of SystemC Modules

	A Behavioral Module System
	Type Inference for Declarations
	Type Inference for Modules
	Proof Obligation Synthesis

	Behavioral Types in Polychrony

	Applications
	Scalability
	Modularity
	Design Checking
	Design Exploration
	Systematic Formalization of Specification-Level Behavior
	Conformance Checking

	 Part -- Using Formal Methods for Embedded Systems
	Introduction
	Translating SystemC Behavior using SSA
	SytemCXML
	Contributions
	Related Work
	Ptolemy
	POLIS, Metropolis
	Existing Tools for Structural Reflection
	ESys.NET Framework
	BALBOA Framework
	Pinapa and LusSy
	Java, C# .NET Framework, C++ RTTI
	Doxygen, XML, Apache's Xerces-C++

	Modular Verification of SystemC Components
	Methodology and Tools
	Static Single Assignment Form and GIMPLE
	Formal Verification of Component Properties

	Case Study of an FIR Filter
	The SystemC Model
	Obtaining a GIMPLE-SSA Representation
	Extracting Clock and Scheduling Information
	The Equivalent SIGNAL Program
	Making a Boolean Model
	Using the Model Checker
	Abstraction of the SIGNAL Model

	Summary

	Automated Extraction of Structural Information from SystemC-based IP
	Extracting Structural Information
	Applications for Validation
	Visualization
	The DOT format.
	Graph generation.

	Design Management
	Automated Test Generation

	Current Work
	Summary

	Incrementally Building Formal Models
	Introduction
	Contributions
	Incremental Model Building and Polychrony
	Nondeterminism
	Verification Logic
	Compositionality

	Methodology
	Tools
	Extreme Programming

	Example
	Traffic light model.
	Model of a DLX Pipeline Control

	Subsequent Work
	Property Ordering
	GUI Toolkit

	Summary

	Validating Latency Insensitive Protocols
	Introduction
	Related Work
	Spin

	Contributions
	Methodology
	Carloni's Latency Insensitive Protocol
	Eliminating Relay Stations
	Components with Different Clocks
	Verification of LI Protocols

	Subsequent Work
	Summary

	Conclusion
	Future Work

	References
	List of Figures

