
1

CARH*: A Service Oriented Architecture for
Validating System Level Designs

Hiren D. Patel, Deepak A. Matthaikutty, David Berner, Sandeep K. Shukla,

Abstract— Existing system level design languages and frame-
works mainly provide a modeling and a simulation framework.
However, there is an increasing demand for supporting tools to
aid designers in quick and faster design space and architectural
exploration. As a result, numerous tools such as integrated
development environments and others that help in debugging,
visualization, validation and verification are commonly employed
by designers. As with most tools, they are targeted for a specific
purpose, making it difficult for designers to possess all desired
features from one particular tool. Only public-domain tools can
be easily extended or interfaced with other existing tools, which
a lot of the existing commercial tools do not promote. Having an
extendable framework allows designers to implement their own
desirable features and incorporate them into their framework.
However, for technology reuse and transfer, it is important to
have a tidy infrastructure for interfacing the extension with the
framework, such that the added solution is not highly coupled
with the environment making distribution and deployment to
other frameworks difficult if not impossible. This requires a plug-
and-play framework where features can be easily integrated. In
this paper, we tackle these issues of extendibility, deployment, the
inadequacies in system level design languages and frameworks by
presenting a service oriented architecture for validating system
level designs for SystemC called CARH, that uses a variety of
open-source technologies such as Doxygen, Apache’s Xerces XML
parsers, SystemC, TAO and ACE.

Index Terms— SystemC, CORBA, Middleware, Reflection, In-
trospection, Verification and Validation, Embedded System De-
sign

I. INTRODUCTION

The rising complexity of embedded system design and
the increasing engineering efforts for their realization has
resulted in a widening of the productivity gap. Efforts towards
mitigating the productivity gap have raised the importance of
System Level Design (SLD)s languages and frameworks. In
recent years, we have seen SLD languages such as SystemC,
SpecC, SystemVerilog [1], [2], [3] in efforts to raise the level
of abstraction in hardware design. These SLDs assist designers
in modeling, simulation and validation of complex designs.
However, the overbearing complexity and heterogeneity of
designs make it difficult for embedded system designers to
meet the time-to-market with just the provided SLDs. Hence
the proliferation of numerous commercial tools supporting
SLD languages with features for improved model building ex-
perience. This shows that designers need improved techniques,
methodologies and tools for better debugging, visualization,
validation and verification in order to improve productivity.

* We code name our software systems after famous computer scientists.
CARH (kär) stands for C. A. R. Hoare.

Most of the present SLD languages and frameworks (SLDL)
are primarily equipped with a modeling and simulation envi-
ronment and lack facilities to ease model building, visualiza-
tion, execution analysis, automated test generation, improved
debugging, etc., which are becoming increasingly important
to enhance the overall design process. As evidenced by the
release of commercial tools such as Debussy [4], Conver-
genSC [5], VCS [6], Incisive [7] to mention a few, SLDL
themselves require additional supporting tools. However, with
the multitude of commercial tools, a designer must select
the set of tools that best fits his/her needs and many times
the existing tools do not suffice. This raises an issue of
extendibility, where designers have no way to extend the
commercial tools or solutions to suit their own specific needs.
Even if the SLDL can be subject to alterations, the abundance
of open-source tools are subdued by the issue of efficient
deployment mechanisms and reusability. In addition to the
ability of designers to extend a framework, they should also
be able to cleanly interface and distribute their solution for
integration with other SLDLs.

Some industrial outcomes to addressing these inadequacies
in SLDLs are simulation-based dynamic validation frame-
works such as ConvergenSC [5], VCS [6] and Cadence In-
cisive [7]. However each of these tackle various aspects of the
design process. There are some overlapping features and some
distinct desirable features, and at this moment it is not possible
to unify the capabilities into one framework. Furthermore, the
inherent problem of extendibility, disallows users to consider
altering or integrating these different frameworks.

In efforts to address these issues with industrial simulation-
based dynamic validation frameworks and the lack of features
for SLDLs, we propose a simulation based dynamic validation
framework called CARH as a solution for SystemC. CARH
is a service oriented verification and validation framework
using middleware technology. In particular we employ TAO
[8] that is real-time (R/T) CORBA Object Request Broker
(ORB) [9] and ACE [10], to allow for a language independent
pluggable interface with the framework. We show the use
of public domain tools, Doxygen, XML and Xerces-C++ for
structural reflection of SystemC models, thus avoiding using
front-end parsing tools such as EDG [11]. We exploit the open-
source nature of SystemC to perform runtime reflection. We
also introduce services for improved debugging, automated
test generation, coverage monitoring, logging and a reflection
service. ACE also provides design pattern implementations for
multi-threaded models, thread pooling and synchronization.
The inherent R/T facilities from TAO allows for R/T software
modeling. This is also ideal for cosimulation, because it fa-



2

cilitates independent languages that support CORBA to easily
interface with CARH. In CARH we have built a R/T mid-
dleware based infrastructure using Event service and Naming
service among CORBA services, and by building a number
of domain specific facilities such as reflection, automated test
generation and dynamic-value change dump (d-VCD).

A. Main Contributions

We enlist the fundamental contributions of our work:
• Service-orientation a necessary approach for allowing a

multitude of features that enable multi-platform debug-
ging, visualization, performance and coverage monitoring
for system level designs.

• The use of a standardized interface-based mechanism for
allowing the different services to communicate and ex-
change information amongst themselves. Using the OMG
standardization of CORBA-variant implementations, any
new feature that follows this standardization can be easily
integrated into CARH.

• Introspective facilities for the models: Facilitating any
such capabilities requires that the infrastructure have
the ability to introspect the models. Our reflection and
introspection mechanism improves debugging capability
by providing automated test generation and extraction of
runtime information of SystemC models.

• Debugging facilities: Unfortunately, standard debuggers
prove less useful when debugging multi-threaded models
and we need to facilitate the designer with model execu-
tion information in terms of call graphs, dynamic-Value
Change Dump (d-VCD) and logging facilities.

• Automated test generation capabilities: Even though SCV
has utilities for randomized constraint and unconstrained
based test generation, there is no infrastructure that auto-
matically generates testbenchs for particular models and
stimulates them.

B. Organization

In Section 2, we briefly discuss the inadequacies of SLDLs
and current dynamic validation frameworks. The following
section outlines our approach to addressing these inadequacies.
In Section 4, we discuss related work with Reflection and
Introspection (R-I) along with the technologies we employ in
endowing SystemC with R-I. Section 5 presents the CARH
architecture followed by a detailed description of the services
rendered. Section 7, describes the usage model for the CARH
framework. In Section 8, we provide simulation result for the
FIR and FFT modeled using CARH framework and finally
concluding remarks and future work in Section 9.

II. ISSUES AND INADEQUACIES OF CURRENT SLDLS AND
DYNAMIC VALIDATION FRAMEWORKS

There are numerous SLDLs employed in the industry
such as Verilog, SystemVerilog, SpecC, VHDL and SystemC
[3], [2], [12], [1] that primarily comprise of two aspects.
The first being a modeling framework and the other being
a simulation framework. The modeling framework allows

designers to express designs either in a programmatic or
graphical manner and the simulation framework is responsible
for correctly simulating the expressed model. Designers can
create models using the modeling framework and verify the
design via simulation. However, with the rising complexity in
current designs, it is not enough to simply provide designers
with a modeling and simulation framework. It is becoming
evident that designers require supporting tools to increase their
productivity and reduce their design time. We enlist some
of the important supporting features that are necessary for
today’s designers. They are: introspection in SLD languages
and frameworks, automated testbench generation, coverage
monitors, performance analysis and enhanced visualizations.

There are several industrial solutions that are targeting prob-
lem areas in SLDLs by providing some of these above men-
tioned features. However, instead of describing the multitude
of commercial solutions for some of the inadequacies with
SLDLs, we discuss some of the validation frameworks that
are commercially available for improving design experience.
Some of them consist of the features that we realize as being
important for SLDLs.

Few of the popular validation framework solutions are
ConvergenSC [5], VCS [6] and Cadence Incisive [7]. Each
one of these tools have good solutions for different aspects in
aiding designers for improved validation and model building
experience. For example, ConvergenSC presents a SystemC
integrated development environment (IDE) using Eclipse. This
IDE has project management support, version control and
build support. It also has an advanced debugging environment
allowing step-wise execution that is specially geared towards
QuickThreads used in SystemC. Although ConvergenSC pro-
vides a good IDE for improving design productivity and de-
bugging, it does not support any testbench generation features
that are crucial for correctness of designs. On the other hand,
VCS targets the aspect of RTL verification by incorporating
multi-language support for Verilog, VHDL, SystemVerilog and
SystemC, coverage techniques for Verilog and mixed-HDL
designs, assertion-based design verification, and testbench
generation constructs. It can interface with other Synopsys
products. Similarly, Incisive from Cadence also supports some
of the similar features for integrated transaction environment,
unified simulation and debug environment, assertion support
and testbench generation. By simply looking at some of these
commercial solutions, we notice that neither one of these tools
fully suffice the needs of a designer.

One apparent and a major drawback in the above men-
tioned industrial solutions is that of extendibility. Due to
the commercial nature of these tools, it is impossible for
designers to extend the existing framework themselves. Even
though ConvergenSC’s Eclipse IDE allows for plugins, their
debugging facilities may not be easily extendable as desired by
users. Furthermore, none of these solutions are open-source,
disallowing users to consider alterations. Hence, designers
have to look elsewhere for technology that can complement
their existing solution. None of these tools can satisfy every
designer’s requirements thus necessitating the use of a variety
of additional tools. For example, a designer may require
ConvergenSC as an IDE, but also has to use VCS for RTL



3

verification along with System Studio for system level design
support. Even then, the use of multiple commercial tools may
still not satisfy a specific purpose in the mind of the designer.
This difficulty can be overcome by providing a framework that
is a part of the public-domain, and that is easily extendable.

Another important concern is the deployment and reuse of
technology. Often times, there are designers who create spe-
cific tools to perform certain tasks that are difficult to distribute
because the tools are highly coupled with their environment.
For example, suppose some designer implements a hot-spot
analyzer for ConvergenSC as a plugin. This plugin would
probably be highly coupled with the Eclipse and ConvergenSC
environment making it difficult to adapt to other IDEs or
environments. Therefore, another designer using a different
environment may have difficulty in interfacing with this plugin
without using that particular set of tools. Hence, it is important
that extendibility is followed by a clean deployment mecha-
nism so that plugins interact with their environment through
an interface such that an easy adaptation to a different third
party environment is possible. A well constructed solution
for deployment also promotes unification of relevant tools
with a clean interfacing mechanism that facilitates seamless
interoperability between multiple tools.

III. OUR GENERIC APPROACH TO ADDRESSING THESE
INADEQUACIES

We propose a generic approach that addresses the primary
inadequacies of extendibility, deployment and reuse in exist-
ing validation frameworks and features for supporting tools
that we perceive as being important for SLD languages and
frameworks.

A. Service Orientation

Our approach promotes the idea of service orientation in
SLDLs, where features are implemented as services that in-
teract with each other through IDL interfaces that are language
neutral interfaces defined by OMG [13]. Thus, the entire
architecture comprises of multiple floating services that can be
queried by clients through a common interface. Furthermore,
this solution must be part of the public-domain such that
designers may add services at their will.

Extendability comes naturally with such an approach be-
cause a particular feature can simply be integrated into the
architecture as a service that can also employ other existing
services. In addition, deployment is relatively easy because
the newly added service follows a strict interface convention
that it must adhere. Lastly, the implementation of the feature
can be independent of the interface as a service, allowing easy
distribution and reuse of the feature.

Furthermore, features from different language paradigms
may be integrated with the architecture as long as the lan-
guage can interact with the interface mechanism. This means
multi-language services can be integrated into the architecture
through this service/interface mechanism. For example, a
visual interface displaying performance graphs and tables may
use Java as the core language. However, the actual simulation
is performed in a C++ based environment and the interface

mechanism allows for the two to communicate and exchange
messages.

The advantage of following the OMG standardization,
which TAO or any other CORBA-variant adheres to, is that
all implementations of OMG standards can be seamlessly used
with CARH. A commercial tool that can conform to such a
standard allows for easy integration and adoption to CARH.

In addition, these features can be distributed over multiple
computers or networks promoting a distributed simulation and
validation infrastructure. An example of using a distributed
framework is described in [14], that allows compilation and
execution of testbenches on a distributed network.

B. Introspection Architecture

The use of introspection is commonly seen in programming
languages such as Java and languages that use the .NET frame-
work. However, infiltrating introspective capabilities in SLDLs
is still a sought after feature. Most attempts at introspection
in SLDLs are facilitated via structural reflection, but runtime
reflection also offers even more possibilities. If an SLDL
inherits introspective capabilities, then projects such as IDEs,
value-change dump (VCD) viewers, improved debugging, and
call graphs could take advantage of the reflected information.
Unfortunately, there are very few nonintrusive methods for
structural reflection and hardly any for runtime reflection [15].

C. Test Generation and Coverage Monitor

Most designers are also responsible for constructing their
testbenches that perform sanity and functional tests on their de-
signs. Manual testbench generation is tedious and many times
randomized testbenches, weighted testbenches, range-based
testbenches are sufficient in validating functional correctness.
Furthermore, a testbench generator can take advantage of an
introspective architecture to query information regarding ports,
signals, types, bitwidths, etc. and then automatically with some
user-hints generate testbenches. However, most SLDLs do not
come with a facility to automatically generate testbenches.
Thus, making it another important supporting feature for
SLDLs.

Coverage monitors provide a measure of the completeness
of a set of tests. Computing coverage during validation re-
quires runtime information. This is where the runtime reflec-
tion capability can be exploited. In this paper we do not discuss
about specific algorithms for test generation or coverage driven
test generation because this paper is about the service oriented
validation framework and these are but a few examples of
services we need to integrate in such an environment. So the
interfaces of these services are relevant to this paper and not
the algorithms themselves.

D. Performance Analysis

As with most large designs, simulation efficiency is usually
a major concern for designers for timely validation purposes.
For this, performance analysis features are essential to SLDLs.
There are designers who require hot-spot analysis to identify
the bottlenecks of the design such that they can focus their



4

optimization techniques towards that section. There are nu-
merous metrics for measuring the time consuming blocks. For
hardware design languages using a discrete-event simulation,
we envision a performance analysis service that provides the
designer with the following capabilities:
• The amount of time every hardware block or module

consumes.
• The time spent in computation per module versus inter-

module communication time.
• The number of times a particular block is scheduled to

execute.
• The frequency of delta events and timed events generated

by modules.
• Designer specified timers for identifying time taken in

particular sections of the implementation.
• Version comparisons such that altered versions of the

design can be aligned with the previous versions and
performance metrics can be easily compared through
graphs and tables.

These are some of the many capabilities that we see im-
portant for performance comparisons. However, performance
analysis features are crucial in SLDLs for improving simu-
lation efficiency of the designs, thus an important required
feature for SLDLs.

E. Visualization

When working with large designs, a visual representation
can be helpful in many ways. Visualization is an impor-
tant tool for the designer to keep an overview and better
manage the design. Using a graphical representation than
requiring designers to traverse through many lines of code
can immensely benefit design experience. Especially during
architectural exploration and refinement, visualizations can
help to take important decisions or to reveal problematic
areas of the design. Visualizations for communication hot-
spots, code usage, or online control flow analysis can give
fast intuitive information about important key figures of the
design.

In order to obtain meaningful and visually appealing graphs,
we need two things: (i) The required data has to be collected
and be made easily available. This can be rather obvious for
static information such as the netlist or the module hierarchy,
but may require important infrastructure support for dynamic
information such as communication load or code coverage.
(ii) The data has to be processed into visual graphs. This can
be a very complex task depending on the type of graph and
the level of desired flexibility and interaction. However there
are many existing libraries and toolkits that can be used to
render a graph structure. The Debussy nSchema and nWave
modules [4] for example, are commercial tools for waveform
and structural layout visualization. The GraphViz package [16]
is an example for a comprehensive graph visualization package
that can render and display different types of graphs such as
simple textual description and others. Since SLD languages
do not come with tools providing such visualizations, we
see an important need to add this infrastructure to SLD
toolkits in order to take advantage of advanced SLD features.

Visualization in an SLDL toolkit can use data available from
other services such as the coverage monitors, introspection
architecture, and performance analysis and aid the designer in
better comprehending this data. The more services an SLDL
offers the more possibilities are there. Visualization can help
to take design decisions based on more information in less
time. The authors of [17] report an approach for interfacing
visualization GUIs to SystemC. However, with the reflection
capabilities in CARH we can provide a similar interface in an
easier manner.

Until now we discussed the role of SLDLs in modeling
and simulation, the need for supporting tools for SLDLs and
a good infrastructure for deployment, extendibility and reuse.
Now, we present CARH, a service oriented framework for
validation of SystemC models. The SLDLs we choose for our
experimentation is SystemC [1] and employ the TAO [8] and
ACE [10] libraries for the service orientation and implement
additional services to promote the supporting features.

IV. BACKGROUND & RELATED WORK

In this section we define reflection and introspection fol-
lowed by descriptions of some frameworks and languages that
provide R-I along with the open-source tools that we employ
in deriving our solution for R-I and CARH.

A. Reflection and Introspection

Introspection is the ability of an executable system to
query internal descriptions of itself through some reflective
mechanism. The reflection mechanism exposes the structural
and runtime characteristics of the system and stores it in a
data structure. We call data stored in this data structure meta-
data. This data structure is used to query the requested internal
characteristics. The two sub-categories of the reflection meta-
data are structural and runtime. Structural reflection refers
to descriptions of the structure of a system. For SystemC,
structural reflection implies module name, port types and
names, signal types and names, bitwidths, netlist and hierarchy
information. On the other hand runtime reflection exposes
dynamic information such as the number of invocations of
a particular process, the number of events generated for a
particular module and so on. An infrastructure that provides
for R-I (either structural or runtime reflection) is what we term
an reflection service.

B. Existing tools for structural reflection

Several tools may be used for implementing structural
reflection in SystemC. Some of these are SystemPerl [18],
EDG [11], or C++ as in the BALBOA framework [19] and
Pinapa [20]. However, each of these approaches have their
own drawbacks. For instance, SystemPerl requires the user to
add certain hints into the source file and although it yields
all SystemC structural information, it does not handle all
C++ constructs. EDG is a commercial front-end parser that
parses C/C++ into a data structure, which can then be used
to interpret SystemC constructs. However, interpretation of
SystemC constructs is a complex and time consuming task,



5

plus EDG is not available in the public domain. BALBOA
implements its own reflection mechanism in C++ which again
only handles a small subset of the SystemC language. Pinapa
is a new front-end for SystemC that offers an intrusive solution
for parsing SystemC by altering GCC and SystemC’s source
code. As for runtime reflection, to our knowledge, there is no
framework that exposes runtime characteristics of SystemC
models.

C. ESys.NET Framework and Introspection in SystemC

ESys.NET [21] is a system level modeling and simulation
environment using the .NET framework and C# language. This
allows ESys.NET to leverage the threading model, unified type
system and garbage collection along with interoperability with
web services and XML or CIL representations. They propose
the managed nature of C# as an easier memory management
solution with a simpler programming paradigm than languages
such as C or C++ and use the inherent introspective capabili-
ties in the .NET framework for quicker debugging. They also
employ the common intermediate language (CIL) as a possible
standard intermediate format for model representation. One of
the major disadvantages of using the .NET framework is that
it is platform dependent. The .NET framework is primarily a
Microsoft solution and making it difficult for many industries
to adopt technology built using the .NET architecture because
of well-established Unix/Unix-variant industrial technologies.

There are obvious advantages in making ESys.NET a
complete mixed-language modeling framework interoperable
with SLDLs such as SystemC. However, we see no easy
solution for interoperability between managed and unmanaged
frameworks partly because integrating the unmanaged project
in a managed project reduces the capabilities of the .NET
architecture. For example, mixing managed and unmanaged
projects does not allow the use of .NET’s introspection capa-
bilities for the unmanaged sections of the project. A natural
way to interact between different language paradigms and
development approaches (managed versus unmanaged) is to
interface through a service oriented architecture. Microsoft has
their own proprietary solution for this such as COM, DCOM
and .NET’s framework. Unfortunately, one of the major draw-
back as mentioned earlier is that C# and .NET framework is
proprietary technology of Microsoft. Even though there are
open-source attempts at imitating C#, the .NET framework as
a whole may be difficult to conceive in the near future [22].

The authors of [21], inspired by the .NET framework’s
reflection mechanism propose the idea of a composite design
pattern for unification of datatypes for SystemC. They en-
hance SystemC’s datatype library by implementing the design
pattern with additional C++ classes. This altered datatype
library introduces member functions that provide introspection
capabilities for the particular datatypes. However, this requires
altering the datatype library and altering the original source
code to extract structural information. This raises issues with
maintainability with version changes, updates and standard
changes due to the highly coupled solution for introspection.

A different approach for exposing information about Sys-
temC models to graphical user interfaces (GUI) is described

in [17]. This work describes a methodology for interfacing
SystemC with external third party tools where they focus on
a GUI value-change dump viewer as the external tool. This
requires allowing the VCD viewer to probe into the SystemC
model and display the timestamp, the type of the signal and
the current value of the signal. The authors document the
required changes to the SystemC scheduler sc simcontext,
sc signal and sc signal base classes along with their
additional interface classes to expose the type of a SystemC
signal and its corresponding value. They implement the ob-
server pattern such that the VCD viewer accepts the messages
from the altered SystemC source and correctly displays the
output.

D. BALBOA Framework

The BALBOA [19] framework describes a framework for
component composition, but in order to accomplish that, they
require R-I capability of their components. They also discuss
some introspection mechanisms and whether it is better to
implement R-I at a meta-layer or within the language itself.
We limit our discussion to only the approach used to provide
R-I in BALBOA.

BALBOA uses their BIDL (BALBOA interface description
language) to describe components, very similar to CORBA
IDLs [9]. Originally IDLs provide the system with type
information, but BALBOA extends this further by providing
structural information about the component such as ports, port
sizes, number of processes, etc. This information is stored at
a meta-layer (a data structure representing the reflected char-
acteristics). BALBOA forces system designers to enter meta-
data through BIDL, which is inconvenient. Our method only
needs pre-processing of SystemC models. Another limitation
of this framework is that the BIDL had to be implemented.
Furthermore, the designer writes the BIDL for specifying
the reflected structure information which can be retrieved
automatically from SystemC source. BALBOA also does not
perform runtime reflection.

E. Java, C# .NET Framework, C++ RTTI

Here, we discuss some existing languages and frameworks
that use the R-I capabilities. They are Java, C# and the
.NET framework and C++ RTTI. Java’s reflection pack-
age java.lang.reflect and .NET’s reflection library
System.Reflection are excellent examples of existing R-
I concept implementations. Both of these supply the program-
mer with similar features such as the type of an object, member
functions and data members of the class. They also follow a
similar technique in providing R-I, so we take the C# language
with .NET framework as an example and discuss in brief their
approach. C#’s compiler stores class characteristics such as
attributes during compilation as meta-data. A data structure
reads the meta-data information and allows queries through
the System.Reflection library. In this R-I infrastructure,
the compiler performs the reflection and the data structure
provides mechanisms for introspection.

C++’s runtime type identification (RTTI) is a mechanism
for retrieving object types during execution of the program.



6

Some of the RTTI facilities could be used to implement R-I,
but RTTI in general is limited in that it is difficult to extract
all necessary structural SystemC information by simply using
RTTI. Furthermore, RTTI requires adding RTTI-specific code
within either the model, or the SystemC source and RTTI is
known to significantly degrade performance.

F. Doxygen, XML, Apache’s Xerces-C++

Two main technologies we employ in our solution for R-
I for SystemC are Doxygen and XML. Doxygen [23] is a
documentation system primarily for C/C++, but has extensions
for other languages. Since SystemC is simply a library of
C++ classes, it is ideal to use Doxygen’s parsing of C/C++
structures and constructs to generate XML representations of
the model. In essence Doxygen does most of the difficult work
in tagging constructs and also documenting the source code in
a well-formed XML representation. Using XML parsers from
Apache’s Xerces-C++ we parse the Doxygen XML output files
and obtain any information about the original C++/SystemC
source.

G. TAO and ACE

TAO [8] is a real-time CORBA implementation using the
ACE [10] environment. ACE is a library of C++ classes that
implement design patterns with focus on network application
programming. TAO and ACE together facilitate the user with
CORBA and design pattern capabilities.

H. Service Oriented Software

Many distributed applications use middleware such as
CORBA [9] to integrate a system with services and floating
objects accessible via ORB. System level design languages
can take advantage of middleware for cosimulation purposes
as shown in [24]. [25] discusses a cosimulation environment
for SystemC and NS-2 [26] which can also be integrated
into CARH with relative ease. In addition effective testing
and parallel simulation execution is viable as demonstrated by
[14]. CARH utilizes the TAO & ACE environments to provide
a service oriented architecture extendable for cosimulation,
distributed testing and any user-desired services.

V. CARH’S SOFTWARE ARCHITECTURE

The architectural description in Figure 1 serves as an
extendable road map for CARH. The services and the Sys-
temC models (SystemC-V) are the two main separations in
Figure 1. The distinguishing arrows show interaction between
the services and the SystemC model. The primary interaction
is using an ORB to access services other than the d-VCD that
happens to use TCP/IP protocols for communication. First we
briefly describe the services within CARH:
Reflection: This consists of two sub-services, where the first
exposes structural information about the model and similarly
the second exposes runtime/behavioral information about the
model.
Testbench: This service automatically generates SCV-based
testbenches for the SystemC model using the introspection

capabilities provided by CARH.
Coverage: This performs coverage analysis on collected run-
time information and results from simulation to regenerate
better testbenches.
Logger: It allows logging of runtime information based on
logging requests entered through the user console.
d-VCD: The d-VCD service is independent of an ORB and
communicates through network communication protocols. The
test generation, coverage monitor and logger services require
the reflection and CORBA services. These services can be
configured and invoked by a user console. It provides a
dynamic-Value Change Dump on the reflected module along
with the processes on the SystemC runlist.

The services below are employed by CARH but imple-
mented in CORBA:
Naming: Allows a name to be associated with an object that
can also be queried by other services to resolve that name and
return the associated object.
Event: Allows decoupled communication between the re-
questors/clients and the services via an event based mecha-
nism. A clean method to implement push and pull interactions
between clients and services.

The remainder elements and facilities of the architecture
shown in Figure 1 are described below:
SystemC-V: We implement SystemC-V that supports the
SystemC Verification library (SCV) [1] and it also contains
an extended version of SystemC 2.0.1 that communicates on
an ORB and presents runtime information for introspective
clients/services.

The ORB: The OMG CORBA [9] standard distinguishes be-
tween horizontal CORBA services, and vertical CORBA facil-
ities. According to that terminology, only CORBA horizontal
services we use from TAO are Event and Naming services.
On the other hand the reflection, logger, test generation and
coverage monitoring services are implemented by us, and
qualify as domain specific vertical services.

Console: CARH is operated via the client. The client is a
text-based interface that has commands to perform tasks for
the user such as startup services, set specific service related
flags, specify models to execute and so on.

One of the main strengths of CARH is the possibility of
extensions. Developers can write TAO-based services and
easily interact with the existing architecture via the interfaces
defined. This opens up the possibility of an architecture that
can be extended to support what is described in [24] and
[14] along with many other pluggable services. Those services
can easily be integrated in this architecture. Moreover ACE
allows the use of design patterns [27] that can be effectively
used to implement multi-threaded models and design-specific
servers. For example, our implementation of d-VCD uses the
Acceptor-Connector design pattern from the ACE library. The
multiple models shown being executed on SystemC-V are a
consequence of leveraging the ACE threading mechanisms to
simulate concurrent models. The Usage model in Section VII
steps through showing how CARH is used. Obviously, there



7

Fig. 1. CARH Software Architecture

is a simulation performance price to pay for using such an
infrastructure. Our early experiments show them in tolerable
ranges as reported in Section VIII.

VI. SERVICES RENDERED BY CARH

The ability to introspect structural characteristics of a model
promotes a large variety of services, of which we currently
implement the automated testbench generator and logger ser-
vices. However, with emphasis on improving methodologies
for debugging and model building experience, we extract
runtime characteristics from the model as well and describe
the d-VCD service. These two services made possible by the
introspective architecture are not to be thought of as the only
possible services, but simply two of the many that may follow.
In addition, with the inherent facility of CORBA with the
inclusion of TAO, we provide an elegant infrastructure for a
distributed test environment. In this section, we describe these
services in effort to prescribe examples which can employ the
R-I and TAO capabilities.

A. Reflection Service

Doxygen, XML & Structural reflection: Processing
C++/SystemC code through Doxygen to yield its XML docu-
mentation is ideal for data reflection purposes. The immediate
advantages are that Doxygen output inserts XML tags where
it recognizes constructs specific to the language such as C++
classes and it also preserves the source code line by line. The
first advantage makes it easy to target particular class objects
for further extraction and the latter allows for a well-defined
medium for extracting any information from the source that
may not be specific to an implementation. Since all SystemC
constructs are not recognized during this pre-processing, we
use the well-formed XML format of the source code as input
to an XML parser to extract further structural information.

We leverage this well-formed XML-based Doxygen output
to extract all necessary SystemC constructs not tagged by
Doxygen itself using the Xerces parser and we implemented
an additional C++ library to generate an Abstract System

Level Description (ASLD). ASLD is written in a well-formed
XML format that completely describes each module with the
following information: signal and port names, signal and port
types and bitwidths, embedded SystemC processes and their
entry functions, sensitivity list parameters, and its hierarchy.
We introduce a DTD specific for SystemC constructs that
validates the ASLD for correctness of the extraction. The
reflection service reads the ASLD and populates a data struc-
ture representing the model. Finally, TAO/CORBA client and
server interfaces are written to make the reflection into a
floating CORBA facility accessible via the interfaces. Our
website [28] contains all the details and code.

Given an overview of our introspective architecture, we
continue to present details on the infrastructure for introspec-
tion, with SystemC being the targeted SLDL of choice. We
only provide small code snippets to present our approach and
the concept of using Doxygen, XML, Xerces-C++, and C++
data structure to complete the reflection service. We present
details of the Doxygen pre-processing, XML parsers employed
in extracting uninterpreted information from SystemC source
files, our method of storing the reflected meta-data and our
data structure allowing for introspection.

SystemC
Model

Doxygen XML Parser

SystemC DTD

ASLD
Generation

Data
Structure

Phase 1 Phase 2

Fig. 2. Design Flow for Reflection Service

Doxygen pre-processing: Using Doxygen has the benefit
of simplifying C/C++ parsing and its corresponding XML
representations. However, Doxygen requires declaration of
all classes for them to be recognized. Since all SystemC
constructs are either, global functions, classes, or macros,
it is necessary to direct Doxygen to their declarations. For
example, when Doxygen executes on just the SystemC model



8

then declarations such as sc in are not tagged, since it has no
knowledge of the class sc in. The immediate alternative is to
process the entire SystemC source along with the model, but
this is very inconvenient when only interested in reflecting
characteristics of the SystemC model. However, Doxygen
does not perform complete C/C++ compilation and grammar
check and thus, it can potentially document incorrect C/C++
programs. We leverage this by adding the class definition in a
file that is included during pre-processing and thus indicating
the classes that need to be tagged. There are only a limited
number of classes that are of interest and they can easily
be declared so Doxygen recognizes them. As an example
we describe how we enable Doxygen to tag the sc in,
sc out, sc int and sc uint declarations. We include this
description file every time we perform our pre-processing such
that Doxygen recognizes the declared ports and datatypes
as classes. A segment of the file is shown in Figure 3,
which shows declaration for input and output ports along with
SystemC integer and SystemC unsigned integer datatypes.

/*! SystemC port classes !*/
template<class T> class sc_in { };
template<class T> class sc_out { };

/*! SystemC datatype classes !*/
template<class T> class sc_int { };
template<class T> class sc_uint { };

Fig. 3. Examples of class declarations

The resulting XML for one code line is shown in Fig-
ure 4. Doxygen itself also has some limitations though; it
cannot completely tag all the constructs of SystemC without
explicitly altering the source code, which we avoid doing.
For example, the SC MODULE(arg) macro defines a class
specified by the argument arg. Since we do not include
all SystemC files in the processing, Doxygen does not rec-
ognize this macro when we want it to recognize it as a
class declaration for class arg. However, Doxygen allows for
macro expansions during pre-processing. Hence, we insert a
pre-processor macro as: SC MODULE(arg)=class arg:
public sc module that allows Doxygen to recognize arg
as a class derived from class sc module. We define the pre-
processor macro expansions in the Doxygen configuration file
where the user indicates which files describe the SystemC
model, where the XML output should be saved, what macros
need to be run, etc. We provide a configuration file with
the pre-processor macros defined such that the user only has
to point to the directory with the SystemC model. More
information regarding the Doxygen configuration is available
at [23].

Even through macro pre-processing and class declarations,
some SystemC constructs are not recognized without the orig-
inal SystemC source code. However, the well-formed XML
output allows us to use XML parsers to extract the untagged
information. We employ Xerces-C++ XML parsers to parse
the Doxygen XML output, but we do not present the source
code here as it is simply a programming exercise, and point
the readers at [29] for the source code.
XML Parsers: Using Doxygen and an XML parser we

<memberdef kind="variable" id="classfir_1firr0">
   <type>
      <ref refid="classsc__in" kindref="compound">sc_in<ref>  <bool>
   </type>
   <definition>sc_in<bool> fir::reset</definition>
   <name>reset</name>
</memberdef>

<memberdef kind="variable" id="classfir_1firr5">
   <type>
      <ref refid="classsc__out" kindref="compound">sc_out</ref>
      <<ref refid="classsc__int" kindref="compound">sc_int</ref> <16> >
   </type>
   <definition>sc_out<sc_int<16> > fir::result</definition>
   <name>result</name>
</memberdef>

SC_MODULE(fir)
{
  sc_in<bool>  reset;
  sc_in<bool>  input_valid;
  sc_in<int>   sample;
  sc_out<bool> output_data_ready;
  sc_out<sc_int<16> >  result;
  sc_in <bool>   CLK;

  SC_CTOR(fir)
   {
     SC_CTHREAD(entry,CLK.pos());
   }

void entry();
};

SYSTEMC MODULE

DOXYGEN OUTPUT

<module type = "SC_MODULE" name = "fir" >
    <inport type = "bool" name = "reset" />
    <inport type = "bool" name = "input_valid" />
    <inport type = "int" name = "sample" />
    <outport type = "bool" name = "output_data_ready" />
    <outport type = "int"  bitwidth = “16” name = "result" />
    <inport type = "bool" name = "CLK" />

<constructorof modulename  = "fir" >
<process type  = “SC_CTHREAD" name = "entry" />
<sensitivitylist  name = “CLK”   edge = “positive” />

</constructorof>
</module>

ASLD

Fig. 4. Doxygen XML Representation for sc in

reflect the following structural characteristics of the SystemC
model: port names, signal names, types and widths, module
names and processes in modules and their entry functions.
We reflect the sensitivity list of each module and the netlist
describing the connections including structural hierarchy of
the model stored in the ASLD. This ASLD validates against
a Document Type Definition (DTD) which defines the legal
building blocks of the ASLD that represents the structural
information of a SystemC model. Some constraints the DTD
enforces are that two ports of a module should have distinct
names and all modules within a model should be unique. All
these constraints ensure that the ASLD correctly represents an
executable SystemC model. The main entities of the ASLD are
shown in Listing 1.
ASLD: In Listing 1, the topmost model element corresponds
to a SystemC model with multiple modules. Each module
element acts as a container for the following: input ports,
output ports, inout ports, signals and submodules. Each sub-
module in a module element is the instantiation of a module
within another module. This way the ASLD embeds the
structural hierarchy in the SystemC model and allows the
introspective architecture to infer the toplevel module. The
submodule is defined similar to a module with an additional
attribute that is the instance name of the submodule. The signal
element with its name, type and bitwidth attributes represents
a signal in a module. Preserving hierarchy information is very
important for correct structural representation. The element
inport represents an input port for a module with respect to
its type, bit width and name. Entities outport and inoutport
represent the output and input-output port of a module. Line
16 describes the constructorof element, which contain multiple
process elements and keeps a sensitivitylist element. The
process element defines the entry function of a module by
identifying whether it is an sc method, sc thread or sc cthread.
The sensitivitylist element registers each signal or port and
the edge that a module is sensitive to as a trigger element.
Connections between submodules can be found either in a
module or in the sc main. Each connection element holds the



9

name of the local signal, the name of the connected instance
and the connected port within that instance. This is similar to
how the information is present in the SystemC source code and
is sufficient to infer the netlist for the internal data structure.

Using our well-defined ASLD, any SystemC model can be
translated into an XML based representation and furthermore
models designed in other HDLs such as VHDL or Verilog
can be translated to represent synonymous SystemC models
by mapping them to the ASLD. This offers the advantage that
given a translation scheme from say a Verilog design to the
ASLD, we can introspect information about the Verilog model
as well.

Listing 1. Main Entities of the DTD
1<!ELEMENT model ( module )∗ >
2<!ATTLIST model name CDATA #REQUIRED>
3

4<!ELEMENT module ( i n p o r t | o u t p o r t | i n o u t p o r t |
s i g n a l | submodule )∗ >

5<!ATTLIST module name CDATA #REQUIRED t y p e CDATA #
REQUIRED >

6

7<!ELEMENT submodule EMPTY >
8<!ATTLIST submodule t y p e CDATA #REQUIRED name CDATA #

REQUIRED i n s t a n c e n a m e CDATA #REQUIRED >
9

10<!ELEMENT s i g n a l EMPTY >
11<!ATTLIST s i g n a l t y p e CDATA #REQUIRED b i t w i d t h CDATA

#IMPLIED name CDATA #REQUIRED >
12

13<!ELEMENT i n p o r t EMPTY >
14<!ATTLIST i n p o r t t y p e CDATA #REQUIRED b i t w i d t h CDATA

#IMPLIED name CDATA #REQUIRED >
15

16<!ELEMENT c o n s t r u c t o r o f ( p r o c e s s ∗ | s e n s i t i v i t y l i s t )
>

17<!ATTLIST c o n s t r u c t o r o f modulename CDATA #REQUIRED >
18

19<!ELEMENT p r o c e s s EMPTY >
20<!ATTLIST p r o c e s s t y p e CDATA #REQUIRED name CDATA #

REQUIRED >
21

22<!ELEMENT s e n s i t i v i t y l i s t ( t r i g g e r )∗ >
23

24<!ELEMENT t r i g g e r EMPTY >
25<!ATTLIST t r i g g e r name CDATA #REQUIRED edge CDATA #

REQUIRED>
26

27<!ELEMENT c o n n e c t i o n EMPTY>
28<!ATTLIST c o n n e c t i o n i n s t a n c e CDATA #REQUIRED member

CDATA #REQUIRED l o c a l s i g n a l CDATA #REQUIRED>

Data structure: The ASLD serves as an information base
for our introspection capabilities. We create an internal data
structure that reads in this information, enhances it and makes
it easily accessible. The class diagram in Figure 5 gives an
overview of the data structure. The topmodule represents the
toplevel module from where we can navigate through the
whole application. It holds a list of module instances and a
list of connections. Each connection has one read port and
one or more write ports. The whole data structure is modeled
quite close to the actual structure of SystemC source code.
All information about ports and signals and connections are
in the module structure and only replicated once. Each time a
module is instantiated a moduleinstance is created that holds
a pointer to its corresponding module.

The information present in the ASLD and the data structure
does not contain any behavioral details about the SystemC
model at this time, it merely gives a control perspective of the
system. It makes any control flow analysis and optimizations
on the underlying SystemC very accessible.

MODULE

PROCESSINPORT SIGNALOUTPORT

PORT

*

SENSITIVITY
LISTINOUTPORT

TOPLEVEL

*** ***

MODEL

*

1

1

CONNECTION *
*

*
1MODULE

INSTANCE
MODULE

REGISTRY

Fig. 5. Class diagram showing data structure

Focus-defocusing of models and modules: The reflection
service also implements the idea of focusing on modules. Since
a model generally consists of multiple SystemC modules, the
reflection service reflects information regarding the module in
focus. This focus can be changed through interface functions
accessible to the user. Furthermore, there can be multiple
instances of the same or different model that needs reflecting.
Similar to focusing on modules, we implement focus support
for models.

The source code for this introspective infrastructure in
SystemC is available online at [29] for download.

B. Testbench Generator

CARH provides automated test generation and coverage
monitoring as vertical services for testing SystemC mod-
els. The test generation service is built using the SystemC
Verification (SCV) [1], which is a library of C++ classes,
that provide tightly integrated verification capabilities within
SystemC. This service takes the name of the model, a data file
and a few user specified parameters to generate customized
testbenches for the model.

Algorithm 1 Test Generation
1: Invoke generate moduletb(module m, option p, datafile d)
2: if marked ports exist then
3: For each marked port ‘pt’
4: if ‘pt’ exists in module ‘m’ then
5: if p = “unconstRand” then
6: Query reflection service for type of port ‘pt’
7: Query reflection service for bitwidth of port ‘pt’
8: Generate randomized testbench
9: else if p = “simpleRand” then

10: Repeat Step 2 & 3
11: Generate simple constrained randomized testbench
12: else if p = “distRand” then
13: Repeat Step 2 & 3
14: Generate randomized testbench with distribution modes
15: end if
16: else
17: Print “Test Generation Failed”
18: endif
19: else
20: For all ports in module ‘m’
21: Repeat through Steps 4 to 18
22: end if

The client issues commands that specify the model and
module in focus to the test generation service, which invokes



10

the respective API call on the reflection object that creates the
corresponding ASLD for the SystemC model. Then it invokes
the API call for initialization of the data structure and enabling
the introspective capabilities of the reflection object. This
allows the test generator to introspect the reflected information
and automatically generate a testbench based on the user-
defined data file and parameters. The test generator searches
for marked ports for the given module and introspects them.
If none were found, then all the ports for the given module
are introspected and a corresponding testbench is generated.

The test generator can create constrained and unconstrained
randomized testbenches. In the unconstRand mode, uncon-
strained randomized testbenches are created, which use objects
of scv smart prt<T> type from SCV. This is the default mode
of the test generator. In the simpleRand mode, constrained
randomized testbenches are created. These testbenches issue
Keep out and Keep only commands to define the legal range
of values given by the user in the data file. Similarly in the
distRand mode, scv bag objects are used in testbenches given
the appropriate commands from the console and providing the
data file with the values and their probability. Figure 6 and 9
show snippets of executing the FIR example using CARH.

1) Testbench generation Example: We briefly describe the
testbenches generated using the FIR example from SystemC
distribution. In particular, we set focus on the computation
block of the FIR. We present Figure 6 that shows three
testbenches using the unconstRand, simpleRand and distRand
modes. The unconstRand generates unconstrained randomized
testbenches, the simpleRand constrain the randomization using
keep out and keep only constructs with legal ranges specified
from an input data file and the distRand defines SCV bags
that give a probabilistic distribution for the randomization.
Once, the automated testbench generated, it is integrated and
compiled to test the FIR block. The integration is performed
manually by defining the appropriate interface between the
generated testbench and the FIR block.

/*! Defining an SCV smart pointer !*/

scv_smart_ptr <int> r_sample;

/*! Generating the randomized values !*/

r_sample->next();

/*! Defining simple constraints !*/

scv_smart_ptr <int> r_sample;

/*! Defining the legal ranges !*/

r_sample->keep_only ( 10,100 );
r_sample->keep_out ( 21, 49 );
r_sample->keep_out ( 61, 89 );

/*! Defining weights for the distribution mode !*/

scv_smart_ptr <int> r_sample;

scv_bag<pair<int,int> > d_sample;

/*! Defining the legal ranges !*/

d_sample.add(pair<int, int> (1, 3), 40 );
d_sample.add(pair<int, int> (5, 7), 30 );

/*! Setting the distribution mode !*/

r_sample->set_mode(d_sample);

Snippet of the testbench in the  unconstRand mode

Snippet of the testbench in the  simpleRand mode

Snippet of the testbench in the  distRand mode

Fig. 6. Code snippets for generated testbenches

We intend to improve our automated testbench generation
capabilities by first implementing additional services such as
coverage monitors and simulation performance monitors to
better analyze the SystemC model. These additional services
will assist the testbench generator in making more intelligent
and concentrated testbenches.
Distributed Test Environment: Currently, the user compiles

the testbench with the model through the console. However, we
target CARH to handle compilation and execution as described
in [14] and shown in Figure 7. This allows the testbenches
to compile and execute independently through interface calls
on the ORB. In effect, this distributed test environment also
supports cosimulation where different languages that support
CORBA interfaces may communicate through the ORB. Test-
benches could be written in languages different from regular
HDLs as long as they interface correctly with the ORB.
Furthermore, visualization tools interfacing through the ORB
can greatly benefit from such an architecture. Pseudocode 1
shows steps involved in generating a testbench for a module
and the interaction between the test generation and reflection
service.

ORB

Testbench Model specific
pseudo module

Methods

stub

Client wrapper

Top Module

Methods

Signals

Model

Server wrapper

skeleton

Fig. 7. Test Environment

C. d-VCD Service

Implementing runtime reflection mandates alterations to
the existing SystemC source. This is unavoidable if runtime
information has to be exposed for SystemC and we justify this
change by having two versions of SystemC. We call our altered
version SystemC-V, which the designer can use for the purpose
of verification and debugging of SystemC models. However,
for fast simulation the same model can be compiled with the
original unaltered version of SystemC by simply altering the
library target in the Makefiles.

The d-VCD service displays signal value changes for a
module “as they happen”. Regular VCD viewers display VCD
information from a file generated by the simulation. However,
we enable the d-VCD viewer to update itself as the signals
of a focused module in the SystemC model changes. Every
signal value change for the module in focus communicates
with the d-VCD. Likewise, at every delta cycle we send
the process names on the runlist to the d-VCD. Figure 8
shows a screenshot of a GUI for the VCD using Qt [30]. To
enable SystemC-V to expose this information we altered the
sc signal class along with adding an extra class. Before
discussing brief implementation details it is necessary to
understand how we utilize the reflection service. In order
to gain access to the reflected information, we instantiate
an object of class module and use it as our introspective
mechanism. Member functions are invoked on the instance of
module to set the focus on the appropriate module and to
introspect the characteristics of the module.

To facilitate SystemC for exposing runtime characteristics,
we implement class fas sc signal info that stores the



11

signal name (sig name), signal type (sig type) and clas-
sification type (sig class) with their respective set and get
member functions. SystemC has three class representations for
sc signal, where the first one is of template type T, the
second is of type bool and the third is of type sc logic.
Each of these classes inherit the fas sc signal info class
minimizing changes to the original source. In fact, the only
changes in the original source are in the constructor and
the update() member functions. We require the user to
use the explicit constructor of the sc signal class such
that the name of the signal variable is the same as the
parameter specified in the constructor. This is necessary such
that an object of sc signal concurs with the introspected
information from the reflection service. We also provide a
PERL script that automatically does this. The update()
function is responsible for generating SystemC events when
there is a change in the signal value and an ideal place to
transmit the data to the d-VCD service. So, if the signal
type is a SystemC type then the to string() converts to a
string but if it is classified as a C++ type then it is converted
using stringstream conversions.

The explicit constructors invoke classify type()
which classifies the signal into either a SystemC type or a
C++ type. We use the classification to convert all C++ and
SystemC types values to a string type. This is such that
multiple VCD viewers can easily interface with the values
returned from SystemC-V and they need not be aware of
language specific datatypes. Since all SystemC datatypes have
a to string() member function, it is easy to return the
string equivalent for the value. However, for C++ datatypes we
employ a work around using stringstream conversion to
return the string equivalent. Even though, we are successfully
able to translate any native C++ and SystemC datatypes to
their string equivalent, the compilation fails when a SystemC
model uses signals of C++ and SystemC types together. This is
because for C++ datatypes the compiler cannot locate a defined
to string() member function. An immediate solution to
this involves implementing a templated container class for the
templated variables in sc signal class such that the con-
tainer class has a defined function to string() that allows
correct compilation. We add the class containerT<T> as
a container class and replace variable instances of type T to
containerT<T> in order to circumvent the compilation
problem. We interface the runtime VCD with the Qt VCD
viewer implemented by us, shown in Figure 8.

Fig. 8. d-VCD Output

With dynamic runtime support in SystemC, we also expose
runlist information as another example of runtime reflection.
Being able to see the processes on the process runlists gives
a significant advantage during debugging. This capability is
available by altering the SystemC sc simcontext class.
Figure 8 also shows the output for the processes on the runlist
along with the dynamic value changes on signals. Exposing
the process name to the d-VCD service itself does not require
the reflection service since the process names are available
in SystemC sc module class via the name() member
function. However, using the reflection service we provide
the user with more concentrated visuals of model execution
by enabling the user to specify which particular module’s
processes should be displayed. This requires querying the re-
flection service for the name of the modules in focus and only
returning the names of the processes that are contained within
those modules. Implementing this capability required stepping
through SystemC runlist queues and monitoring whether they
match the modules of interest and transmitting the name to
the d-VCD service.

VII. USAGE MODEL OF CARH

<highlight class="normal">SC_MODULE(<sp/>fir<sp/>)</highlight>
<highlight class="normal">{</highlight>
<highlight class="normal">sc_in&lt;bool&gt;<sp/>reset;</highlight>
<highlight class="normal">sc_in&lt;bool&gt;<sp/>input_valid;</highlight>
<highlight class="normal">sc_in&lt;int&gt;<sp/>sample;</highlight>
<highlight class="normal">sc_out&lt;bool&gt;<sp/>output_data_ready;</highlight>
<highlight class="normal">sc_out&lt;int&gt;<sp/>result;</highlight>
<highlight class="normal">sc_in_clk<sp/>CLK;</highlight>

</module>
<module type = "SC_MODULE" name = "fir" >

<inport type = "bool" name = "reset" />
<inport type = "bool" name = "input_valid" />
<inport type = "int" name = "sample" />
<outport type = "bool" name = "output_data_ready" />
<outport type = "int" name = "result" />
<inclk name = "CLK" />
<constructorof modulename  = "fir" >

<process type  = "SC_CTHREAD" name = "entry" />
</constructorof>

</module>

SC_MODULE(test_fir){

sc_out<bool> reset;
sc_out<bool>
input_valid;
sc_out<int> sample;
SC_CTOR(test_fir)
{
SC_THREAD(main);
}
void main();
};

void test_fir::main() {
   while(1)
   {

   // user adds interface

   scv_smart_ptr <int>
   sample;
   sample->next();
   }
}

Doxygen Output

ASLD

. h file . cpp file

> load_config <filename>
> load_model <path> <modelname>

> init_client

> generate_moduletp <modulename>

> kill_services
> genrate_makefile

> marked_ports <portlist>C
o

n
so

le


> startup_services

Fig. 9. Snippets of Intermediate files

User Console: We developed an interactive shell for CARH,
which is shown as Client in Figure 1. The user initiates
the shell and interacts with it to setup the services, request
for a testbench, and execute testbench and model. Figure 10
shows an interaction diagram with the complete usage model.
The usage model starts at the point where the user needs
verification of a SystemC model and initiates the interactive
shell to do so as shown in Figure 9.
Load configuration: The first step is to load the configura-
tion file using the load config <path> command. This
loads the system specific paths to the required libraries and
executables.
Specify model: Assuming that the configuration paths are
correct, the user invokes the load model <path> <mod-
elname> command to specify the directory of the model
under investigation and a unique modelname associating it.



12

Fig. 10. CARH’s Interaction Diagram

SYSTEMC=/home/deepak/sc-ace-rdy-2.0.1
ACE_ROOT=/home/deepak/ace/ACE_wrappers
TAO_ROOT=/home/deepak/ace/ACE_wrappers/TAO DOXY_ROOT=/usr/bin
REFLECTION_SVC=/home/deepak/ace/ACE_wrappers/Reflection
NAMING_SVC=NameService
TESTGEN_SVC=/home/deepak/ace/ACE_wrappers/Reflection/tgn
DVCD_SVC=/home/deepak/ace/ACE_wrappers/Reflection/dvcd

Fig. 11. Snapshot of Configuration file

This command flattens the model into a single flat file by con-
catenating all *.h and *.cpp files in the specified directory
followed by running Doxygen on this file. This results in a
well-formed XML representation of the SystemC model. For
an example see the FIR model in Figure 9 that shows snippets
of the Doxygen output and the ASLD generated.
Initiate services: To start up CARH’s services, the user must
invoke startup services followed by init clients.
These two commands first start the reflection service followed
by the d-VCD and then the automated test generator.
Mark ports: Ports can be marked that are given as input to
the test generator. The user can also create a file with the
listing of the module names and the ports of interest and
load these settings. However, the command marked ports
<portlist> initializes the ports in portlist for intro-
spection and test generation focusing on these ports.
Test generation: The users can then request testbenches
by calling generate moduletb <module name>
or generate topleveltb. We only present the
default test generation commands in this usage model.
The generate moduletb creates a testbench for
the specific module name. However, the user can use
generate topleveltb command to generate a testbench
for the entire model, except that this requires wrapping the
entire model in a toplevel module. We require the user to
wrap it in a module called systemc data introspection to
indicate to the reflection service the toplevel module. The
user can also request for the Coverage Monitor service for
the appropriate test. Figure 9 also shows the .h and the .cpp
file generated for the computation module of the FIR.

Behavioral information: After successful testbench genera-
tion, the user needs to add interface information into the test
such that it can be integrated with the model. Consider the
computation module of the FIR, the interfacing information
would be regarding how many cycles the reset needs to be
applied and when the inputs need to be sampled. Such behav-
ioral aspects are not yet automated with our test generation
service. Then, the user can use the generate makefile
command to produce Makefiles specific for the model after
which the testbench can be compiled and executed from the
console. While the model executes, the d-VCD service does
a dump of the different value change that occur across the
various signals of the model. A screenshot of the d-VCD for
the FIR example is shown in Figure 8. It also displays the
processes on the runlist.

VIII. SIMULATION RESULTS

FIR (seconds) FFT (seconds)
Samples Original CARH Original CARH
100000 4.16 189.42 2.91 191.17
200000 8.20 384.02 5.81 377.47
300000 12.41 566.25 8.79 586.58
400000 16.54 757.02 11.70 788.60
500000 20.67 943.23 14.62 984.03

TABLE I
SIMULATION RESULTS ON FIR & FFT

Table I shows simulation times in seconds for two exam-
ples: Finite Impulse Response (FIR) filter and Fast Fourier
Transform models. Columns marked Original refers to the
model with the testbench generated from the test generation
service compiled with SystemC 2.0.1 and SCV version 1.0p1
and CARH refers to the testbench compiled with SystemC-V
and CARH infrastructure. There is a performance degradation
of approximately 45x and 65x for the FIR and FFT models
respectively. This performance decrease is not surprising when
using TAO. There is a significant overhead in communicating
through an ORB as each of the services are spawned as



13

separate processes registered with the ORB that require com-
munication through CORBA interfaces. However, the facilities
provided by CARH justifies the performance degradation
because CARH offers multiple services and possibilities for
various extensions. CARH can be used during development
of the model for debugging, testing and so on, and when a
simulation needs to be faster then the model can be easily
linked to original SystemC and SCV libraries since no changes
in the source are made. In fact, since services can be turned
on and off at the designers will, we employed the R-I and
testbench generation service to create our testbenches for the
FIR and FFT examples, after which we simply compiled
and executed it with the unaltered version of SystemC. The
simulation times were on average the same as the Original
timings shown in Table I.

Another important point to note is that TAO is just one
implementation of CORBA and not the best stripped down
version suitable for CARH. For example, it has real-time
capabilities that we do not employ at all. We only use TAO as a
solution to display our proof of concept for service orientation
and industrial strength solutions could use a much lighter and
smaller CORBA-variant. This would impact the simulation
results directly as well.

IX. OUR EXPERIENCE WITH CARH

The foremost important experience we discuss here involves
adding a service to CARH. We recount briefly the steps in
integrating this service without getting into the details of the
algorithms employed. We also briefly describe our debugging
experience with the d-VCD and R-I services. This is followed
by a table that describes some of the features CARH possess
versus existing commercial tools.

So, for example, determining the number of times each Sys-
temC process triggers could be a coverage metric sought after.
Evidently, this requires runtime reflection that the R-I service
provides. We implement the coverage service in C++ (or any
CORBA-compliant language) and begin by constructing a data
structure that can store the SystemC process names and an
integer value representing the trigger count. We define the
appropriate member functions that can be used to populate
this data structure. This first step of implementing the data
structure and its API in C++ is a programmer dependent task
regarding the time required to implement. For us, it took
us less than an hour. Uptil this stage we are only preparing
the coverage monitor implementation and the following step
involves wrapping this C++ implementation of the coverage
monitor with CORBA service methods. However, before this,
the IDL must be defined through which this coverage monitor
service interacts with the other clients and services across
the ORB. This step is almost similar to specifying the API
of the data structure, since most of the member functions
of the coverage monitor should be accessible via the ORB.
Hence, the IDL construction itself requires little time. The
third stage involves instantiating an ORB through which the
service registers itself with the Naming Service allowing other
services to locate this new service. We provide a simple
wrapper class that allows easy integration of any generic C++

Capability SystemC
Studio

ConvergenceSC Incisive CARH

Extendibility No No No Yes
Interoperability No No No Yes
Services
Reflection No No No Yes
Introspection No No No Yes
Test Generation Yes No Yes Yes
Coverage Moni-
tors

Yes No Yes No

Debugging
(Call graphs,
Execution traces,
etc.)

No Yes Yes Yes

TABLE II
BRIEF COMPARISION BETWEEN COMMERCIAL TOOLS AND CARH

implementation into a service making this third step requiring
only minutes. Finally, the implementation for requesting infor-
mation from the R-I service through the ORB and populating
the data structure is added to the coverage monitor. This
completes the integration of our example of a basic monitor
service into CARH. The entire process takes only a few
hours, depending on the complexity of the actual core of
the service. For services that require more complex data
structures, algorithms etc., the most of the integration time is
spent in programming these algorithms and not the integration.
Furthermore, if there are existing libraries of algorithms, they
can be easily used to provide the core technology / algorithms
requiring the programmer to only write the IDL and wrapping
the implementation into a service. The services we experiment
with are mainly implemented by ourselves. We do not integrate
a commercial tool into CARH as of yet.

Our debugging experience is limited to using the R-I and
d-VCD services. We found that these two services did indeed
help us reduce the debugging time, especially the display
of processes being triggered. One interesting problem we
discovered with our model using these services is a common
one of missed immediate notification of an sc event. In
SystemC 2.0.1, there is no notion of an event queue for
sc events added into the model for synchronization pur-
poses. This is rectified in SystemC 2.1 with the introduction
of an event queue such that no notifications are missed, but
instead queued. However, with SystemC 2.0.1 (the version we
use for our development) we were able to pinpoint and freeze
the simulation just before the notification and then just after, to
see which processes were triggered following the immediate
notification. However, this is simply one experience of locating
one bug. We understad that adding other debugging facilities
will grealy improve locating design errors.

We present a table displaying some of the noticable features
in commercial tools compared with CARH. We base our
comparision only on publicly available information and do
not claim to know the details of the underlying technologies
used in these commercial tools. From Table II shows some of
the feature comparisions.



14

X. CONCLUSION

CARH presents a methodology where we employ the use
of public-domain tools such as Doxygen, Apache’s Xerces-
C++, TAO, and ACE to present a service oriented validation
architecture for SystemC. In our case, we chose our SLDL
to be SystemC, however that only serves as an example. We
describe our approach in detail and also present CARH whose
core feature is the introspective architecture. Services such
as the automated test generator and d-VCD are some of the
examples that utilize this R-I capability in SystemC. The use
of services and the ORB suggests a tidy deployment strategy
for extensions to a framework. Furthermore, using a CORBA-
variant needs the extensions to adhere a strict interface that
can easily be added as wrappers. This allows the design
of the actual feature to remain isolated from the interface
and can communicate through messages promoting reuse of
technology. Even though there is a performance degradation
in simulation results, the exercise of building highly complex
models can be eased. For fast simulation, once the models
are tested and verified, can be easily linked to the original
SystemC libraries. Since, the services can be turned off and
on at the designer’s will, the simulation times may not be
affected at all if say only the testbench generator service is
employed. The main overhead comes in when using SystemC-
V which requires exposing the internal characteristics of the
model under test via an ORB. The simulation experiments
showed that having all the services up induces a significant
performance penalty. The performance of a simulation run in
this framework is not optimized because we want to create a
“proof of concept” and hence we used an existing CORBA
implementation which is optimized for real-time middleware
applications, and hence not necessarily customized for this
application. However, we believe that if this idea catches on,
we will create customized middleware compliant with OMG
CORBA specifications that will be optimized for this specific
purpose and hence we will have much better performance.
However, to show the validity of such a plug-n-play valida-
tion framework and infrastructure, we did not feel the need
to demonstrate performance efficiency but rather show the
viability of the implementation and illustrate the advantages.

The one most fundamental issue exposed in this work is of
service-orientation and using a standardized specification for
providing an architecture for validating system level models.
With the use of the OMG specification and its implemen-
tation of the CORBA-variant TAO, we show the advantage
of easy deployment, integration and distribution of features
as services. Furthermore, due to the OMG standardization,
any implementation abiding by this standardization would be
easy to integrate into CARH. The ease of extendibility is
natural with such an architecture. Having said that, CARH is a
proof of concept for promoting a service oriented architecture
and for better performance results, a light-weight CORBA-
variant other than TAO should be used. On the other hand,
CARH’s extendibility can result in numerous useful tools
for debugging, visualization, performance monitoring, etc. We
simply show some of the possibilities to further promote the
benefits of a service oriented architecture.

Our experience with CARH suggests an improved model
building experience. In particular, automated testbench gen-
eration overcomes the need to create basic sanity test cases
to verify the correctness of the design. Even with the basic
automated testbench generation service, we could easily locate
problematic test cases resolves as bug fixes in our designs.
With the addition of more intelligent testbench generation al-
gorithms using information from the coverage analysis service,
we foresee a much improved test environment. As for the d-
VCD, the process list visualization and the value changes are
definitely useful. However, we understand that the need for
step-wise execution of the model is crucial and the ability to
pause the simulation is needed. We plan to implement this
using the push-pull event service of TAO such that designers
can step through event notifies and module executions.

Part of this work, the SystemC parser, is available as
an open-source project called SystemCXML [29]. We also
implement an automated test generation service that uses the
existing SCV library to automatically generate testbenches
for SystemC models in CARH. In addition to that, we
offer dynamic representation of the value changes shown
by introducing the d-VCD service along with process list
information. We implement a console through which a user
controls this entire framework. We briefly present a list to
summarize the features that we have implemented so far in
CARH. (i) Reflection service provides structural and runtime
information. (ii) Test generation service supports constrained
and unconstrained randomized testbenches using information
from the reflection service. (iii) Naming service used to access
all other services on an ORB. (iv) d-VCD service receives
signal changes and runlist information. This uses an Acceptor-
Connector design pattern from ACE. (v) Client console allows
integration of all the services.

REFERENCES

[1] OSCI, “SystemC and SystemC Verification,” Website:
http://www.systemc.org.

[2] SPECC, “SpecC,” Website: http://www.ics.uci.edu/specc/.
[3] SystemVerilog, “System Verilog,” Website:

http://www.systemverilog.org/.
[4] Novas, “Debussy Debug System,” http://www.novas.com.
[5] CoWare, “ConvergenSC,” http://www.coware.com.
[6] Synopsys, “Smart RTL Verification,” http://www.synopsys.com.
[7] Cadence, “Incisive Functional Verification,” http://www.cadence.com.
[8] TAO, “Real-time CORBA with TAO (The ACE ORB),”

http://www.cs.wustl.edu/ schmidt/TAO.html.
[9] OMG, “OMG CORBA,” http://www.corba.org/.

[10] ACE, “Adaptive Communication Environment,”
http://www.cs.wustl.edu/ schmidt/ACE.html.

[11] E. Group, “Edison C++ Front-End,” http://www.edg.com.
[12] VHDL, “VHDL,” Website: http://www.vhdl.org/.
[13] OMG, “OMG,” http://www.omg.org/.
[14] Hamabe, “SystemC over CORBA,” http://www5a.biglobe.ne.jp/ ham-

abe/index.html.
[15] D. Berner, H. Patel, D. Mathaikutty, S. Shukla, and J. Talpin, “System-

CXML: An Extensible SystemC Front End Using XML,” Virginia Tech,
Tech. Rep., 2005.

[16] E. R. Gansner and S. C. North, “An open graph visualization system and
its applications to software engineering,” Softw. Pract. Exper., vol. 30,
no. 11, pp. 1203–1233, 2000.

[17] L. Charest, M. Reid, E. Aboulhamid, and G. Boi, “Introspection in
System-Level Language Frameworks: Meta-level vs. Integrated,” in
Proceedings of Design and Test Automation in Europe, 2003.

[18] W. Snyder, “SystemPerl,” http://www.veripool.com/systemperl.html.



15

[19] F. Doucet, S. Shukla, and R. Gupta, “A Methodology for Interfacing
Open Source SystemC with a Third Party Software,” in Proceedings of
Design and Test Automation in Europe, 2001.

[20] GreenSocs, “Pinapa: A SystemC Frontend,” http://www.greensocs.com/.
[21] J. Lapalme, E. M. Aboulhamid, G. Nicolescu, L. Charest, F. R. Boyer,

J. P. David, and G. Bois, “.NET Framework – A Solution for the
Next Generation Tools for System-Level Modeling and Simulation,” in
Proceedings of Design and Test Automation in Europe, 2003.

[22] Mono, “Mono Project,” http://www.mono-project.com/.
[23] Doxygen Team, “Doxygen,” http://www.stack.nl/ dimitri/doxygen/.
[24] A. Amar, P. Boulet, J. Dekeyser, S. Meftali, S. Niar,

M. Samyn, and J. Vennin., “SoC Simulation,”
http://www.inria.fr/rapportsactivite/RA2003/dart2003/.

[25] L. Formaggio and G. P. F. Fummi, “A Timing-Accurate HW/SW Co-
simulation of an ISS with SystemC,” in Proceedings of International
Conference on Hardware/Software Codesign and System Synthesis,
2004.

[26] NS2, “The Network Simulator - NS-2,” http://www.isi.edu/nsnam/ns/.
[27] E. Gamma, R. Helm, J. R, and J. Vlissides, Design Patterns. Addison

Wesley, 1995.
[28] The FERMAT Group, “Formal Engineering REsearch with Models,

Abstractions and Transformations,”
Website: http://fermat.ece.vt.edu.

[29] D. A. Mathaikutty, D. Berner, H. D. Patel, and S. K. Shukla, “FERMAT’s
SystemC Parser,” http://systemcxml.sourceforge.net, 2004.

[30] Troll Tech, “Qt,” Website: http://troll.no.



Details of the revision made to this version of the paper

<Comment from the Associate Editor> Please address all of the issues raised by reviewer 1, as well as
suggestions, and write a response to that review. I’ll then make a decision – I don’t think another full review
cycle will be needed, unless I feel that the issues were not thoroughly addressed.

<Our Comment> We have made the recommended alterations to this version. We added a substantial
section describing our experience using CARH in Section IX. In particular, we first discuss the steps involved
in integrating a coverage monitor service to CARH. Here, we take a simple example of counting the frequency
of triggered SystemC processes as a coverage metric that employs the R-I service and indicate that the main
engineering effort is in the implementing the core technology instead of the actual integration into CARH.
We follow this by a brief discussion on our debugging experience using the d-VCD and R-I service. Again,
we employ a small but common problem with SystemC 2.0.1 of missed notifications. Finally, we add a table
comparing commercial tool features and CARH to the best of our knowledge available from public domain
sources. Unfortunately, we don’t have the resources to explore commercial tools for integration with CARH
and we believe it would not be possible to obtain source code for these tools to understand the interface
requirements either.

We have also added a main contributions section to highlight the fundamental contributions in this work.
We also pinpoint the one most important issue of service-orientation that is necessary for easy deployment,
integration and extendibility. Furthermore, any implementation of the OMG standard would allow integration
into CARH.

We hope that these additions clarify the issues and we would like to thank the reviewers for improving the
quality of this contribution with their continual extensive critiques and suggestions.

Addressing Reviewer 1’s concerns

<Reviewer 1> The issues raised in my review (and other’s reviews) have been properly addressed. The focus
of the paper (including title) has been properly shifted towards the actual proof-of-concept implementation
of an extensible design framework using public- domain tools. In other words, the work is honestly described
and well-written.

Towards the contribution of the work, I am still missing convincing support of the benefits of the approach.
What is novel? Or, what is better than other approaches? These questions need to be answered by providing
experimental evidence and results that allow a comparison.

<Our Comment> We hope that the novelty is more apparent after adding the main contributions. With
the multitude of commercial tools out there which prohibit cross-integration or any integration for that
matter, it makes it very difficult for any designer to be satisfied with just one tool, or even enhance the
commercial tool. The idea is that if these commercial tools followed a service-orientation approach following
a standardization, then their object code could still be proprietary but allows designers to add, enhance and
append to the existing commercial ool. Other commercial tools could leverage the interface defined by them
to allow cross-integration of multiple tools.

The only experimental evidence given (simulation times) is very contra-productive as the performance penalty
is simply too high. It is understood that performance is a price for the additional services, but in this trade-off,
the value of the services must be demonstrated.

<Reviewer 1> The only experimental evidence given (simulation times) is very contra-productive as the
performance penalty is simply too high. It is understood that performance is a price for the additional
services, but in this trade-off, the value of the services must be demonstrated.

1



Examples of experimental values could be:

• How long does it take to extend the system for another service? (low number ¡=¿ easy extensibility)

• Cost of the system (public domain vs. commercial <=> 0 vs. $$$)

• How much does debugging time decrease by use of introspection/ reflection?

• Development time of an actual system being developed

• Table of features comparing your system against existing ones

The paper contains a lot of implementation details (i.e. the software architecture and its interfaces) and is
valuable as such, but is lacking actual insights gained that could apply to other, similar approaches. Thus,
the contribution is quite limited.

<Our Comment> We have added an entire experience section that discusses these issues. Please see section
IX and the response to the associate editor.

Addressing Reviewer 3’s concerns

<Reviewer 3> By restructuring the paper and changing its focus the authors have addressed my primary
concerns with their previous submission. The only remaining comment that I have is that the paper would
be improved by more explicitly identifying the fundamental issues that arise in applying the SOA approach
rather than requiring the reader to pull specific lessons out of the examples.

<Our Comment> We have added a main contributions section that better highlights the important con-
tributions of this work. The fundamental issue in applying SOA are discussed in section IIIA that describe
the advantages of service-orientation.

The first and most natural is of extendability since services can be incorporated into the architecture without
much disturbance to existing services. The second is the advantage of cross-platform support. An imple-
mentation in any language can be easily integrated as long as the interface mechanism conforms to CARH’s
OMG standard. The immediate advantage of having the OMG standard is an excellent advantage for other
tools to follow to provide the above advantages. Lastly, the distributed nature of CORBA allows for these
services to be deployed on different locations, computers etc.

2


