
IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 1

Validating Families of Latency Insensitive

Protocols

Syed Suhaib,Student Member, IEEE,

Deepak Mathaikutty,Student Member, IEEE,

David Berner,Student Member, IEEE,and Sandeep Shukla,Senior Member, IEEE

Abstract

With increasing clock frequencies, the signal delay on someinterconnects in an System On Chip

(SoC) often exceeds the clock period, which necessitateslatency insensitive protocols (LIPs). Correctness

of a system composed of synchronous blocks communicating via LIPs is established by showing

latency equivalencebetween a completely synchronous composition of the blocks, and the LIP based

composition. Every time a new LIP is conceived, they need to be debugged and then proven correct.

Mathematical theorems to establish correctness, though elegant, are error prone, and tedious to create

for every new variant of LIPs. In this work, we present validation frameworks for families of LIPs,

both for dynamic validation, useful for early debug cycles,and formal verification for formal proof of

correctness. This can be a useful framework in the hands of designers trying to create new LIPs or to

optimize existing ones for design convergence.

Index Terms

Simulation, formal verification, long interconnects, latency insensitive protocols, relay station, split-

ter, merger, verification framework.

I. INTRODUCTION

I N the current and upcoming System-on-a-Chip (SoC) designs,intellectual property (IP)

reuse is gaining increasing importance. Reusing pre-existing components such as memories,

processor cores, and dedicated hardware blocks chosen froman IP library seems to be the

only way to mitigate the productivity crisis and shorteningtime-to-market cycles. Therefore, a

This work was supported by the NSF project CRCD/EI 0417340 and CCR-0237947

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 2

significant part of the SoC design problem is in the correct composition of these existing IP blocks

[1]. However, the ever increasing clock frequencies invalidate the synchrony assumption between

IP blocks due to long interconnects. As the clock frequencies have crossed multi giga-hertz range,

the clock period is too short for two communicating components to exchange information across

a long interconnect within such small clock period. This is because some interconnects are longer

than the distance a signal propagates during a single clock cycle [2]. This problem has recently

come into focus through a series of papers [2], [3], [4], [5],[6], [7], [8].

Although, a number of protocols, termed as Latency Insensitive Protocols (LIP)s have been

published in the literature, no formal framework has been created to validate these protocols. The

reason why one needs a framework where variants of these protocols can be quickly validated

either through simulation or through model checking is as follows: These protocols are going

through a continuing evolution phase. For example, [6] attempts to optimize and improve the

protocols described in [2], [3], [4], [5] to obtain a more efficient and simpler protocol circuitry.

In [7], a new protocol for pure Globally Asynchronous and Locally Synchronous (GALS) systems

based on the earlier LIPs has been proposed. In [8], further simplification that obviates the use

of specific protocol circuitry has been proposed. Although [5] offers a mathematical proof of

correctness of their version of LIPs, when optimizations orextensions are made in the subsequent

works, no such formal proof is usually offered. Due to the subtleties involved in the optimizations,

it is plausible that the newly invented LIPs have serious flaws. We have experienced this in our

attempts to optimize Carloni’s protocol [3], [4]. As a result, we felt that there is a need for a

framework where these protocols can be quickly modeled and validated. This is the motivation

for the current paper.

A. Solving the Long Interconnect Problem

Several approaches have been proposed to deal with the problem of long latencies in global

physical chip interconnects in SoC design. One is a family oflatency insensitive protocols (LIP)

as in [5], where all modules are encapsulated with control logic blocks and possibly relay stations

on the interconnects to make these interconnect delays transparent to the actual IPs. Another is

to create packet based Networks on a Chip (NoC)s, also targeted at interconnect latencies [9].

However, designing the composition of IPs necessitates a refinement based design flow. In

such a design flow, a synchronous model [10] of the system can be built where all interconnect

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 3

latencies are assumed to be negligible. This follows from the synchrony hypothesis used in clock-

synchronous hardware design, where, computation and communication latencies are negligible.

From this synchronous model, necessary refinements are madeto the design to render the design

latency insensitive(LI). The correctness criteria is that the LI design belatency equivalentto

the synchronous design. Two signals are said to belatency equivalentif the sequence of valid

or informativeevents on the two signals are identical. In other words, if anobserver observes

the order of events on two signals, while discounting ‘empty’ events, the two signals will look

the same. Since processes can be thought of as consumer and producer of events on signals,

the same notion can be extended to systems. Two system modelsare latency equivalent if their

outputs are latency equivalent given both are subjected to the same (or latency equivalent) input

sequences. Latency equivalence is formally defined in the preliminary definitions in Section IV.

There are many ways one can ensure correctness of LIPs, and LIsystems. Dynamic validation

can be used to show that a system using LI techniques is latency equivalent to the completely

synchronous model of the system which assumes zero delay communication. Although dynamic

validation is appropriate for flushing out protocol design errors, such validation only covers

certain input sequences. Therefore, formal verification isa more desirable validation mechanism.

In order to formally verify such protocols, the LI system as well as the synchronous idealization

have to be modeled formally, and the latency equivalence hasto be captured as a formal property.

However, our experience is that model checking is very resource consuming [11]. Another way

to confirm the correctness of such an implementation is to mathematically formalize it, as done

in [5]. But mathematically proving the equivalence of two systems is a challenging task and not

beyond mistakes. It requires complex mathematical proofs that are not straightforward to follow

by others who want to confirm them, hence every new variation of LIPs cannot be validated

easily using mathematical proof techniques. The best way isto provide designers with an easy

to use framework to model and validate their protocols.

In this work, we propose a framework for validation of such systems. We target formal

verification as well as simulation based techniques to verify the LI systems in our framework.

For formal verification, we use the SPIN model checker to verify the correctness of an LI system,

whereas for the simulation based technique, we use a functional programming based technique

to validate the LI system. We compare and contrast the two techniques and find that the SML

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 4

based simulation for validation is a more convenient way to validate the protocols, especially

for debugging the early versions of the protocols.

Organization: This paper is organized as follows: In Section II, we discusssome related work.

In Section III, the LI refinement methodology is illustratedfollowed by Section IV where we

introduce the preliminary definitions and notations used inthe paper. We also formalize the

components of the LI protocol in this section. We target single clock as well as multi-clock

systems. In Section V, we describe our framework along with its implementation in PROMELA

and SML followed by conclusion in Section VI.

B. Main Contributions

The main contributions of this paper are as follows:

• Development of a framework for validating families of LIPs.

• Formal modeling and verification of a family of LIPs in SPIN.

• Modeling and simulation based validation of LIPs using a functional programming frame-

work.

II. RELATED WORK

There are several approaches on how to create LI designs. Carloni et al proposed a “correct-

by-construction” methodology to design latency insensitive systems for single clock SoCs [3].

In their approach, all modules are encapsulated in a wrapperto form a “shell” that is latency

equivalent to the actual process, without having to modify the internals of the original IP. This

encapsulation is done by composing each process with an equalizer1. Relay stations are added

along the long interconnections. They act like pipeline blocks to store and forward data, and

contain at least two registers and control logic. Once the requirements of these relay stations are

determined based on the long interconnect in the initial place and route, placement and routing

are done again, now including the relay stations. Several iterations for placement and routing

may be needed in order to get a configuration that satisfies allinterconnection constraints. In

this paper, we refer to this approach asrelay-station basedapproach.

1The functionality of the equalizer is defined in the preliminary section

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 5

In [8], we propose a different approach, which disposes of the relay-stations by adding some

interface logic and wiring. While this approach requires more wires, it does not increase the

number of components that have to be placed, and therefore uses less iterations for the placement

and routing. We call this thebridge-basedapproach. Instead of placing relay stations along the

long interconnects that connect two modules, we place abridge at the interface of the modules.

A bridge is a composition of two processes: asplitter at the output of a “shell” and amerger

at the input of the other “shell”. Thesplitter and mergerprocesses are formally defined in the

preliminary definitions in Section IV.

All components of such LI designs are synchronous. The LI systems presented are targeting

SoCs with a single master clock. Singh and Theobald generalize the LI theory for Globally

Asynchronous and Locally Synchronous (GALS) systems [7]. In their approach all input and

output signals are controlled by complex FSMs implemented in the wrapper. The communication

network is implemented as an asynchronous system to connectmodules with different clocks.

Overall this approach is associated with heavy penalties interms of implementation costs and

performance.

Casu and Macchiarulo show how to reduce chip area compared toCarloni’s approach [6]. They

use a smart scheduling algorithm for the functional block activation and substitute relay stations

with simple flip-flops. One disadvantage of this approach is that the schedule has to be computed

a priori and depends on the computation in the process. If anychange is made in any process, it

may result in the change of the flow of tokens and may result in inconsistency with the current

scheduling algorithm. In this case, the schedule has to be recalculated, which is expensive. We

propose a validation framework for such LI protocols where they can be easily checked for

correctness. We use two different techniques for validation: Formal verification using SPIN and

simulation based validation using SML. This framework helps in validating such protocols that

are continuously changing and evolving.

III. D ESIGN FLOW TO LI REFINEMENT

In this section, we describe a transformation procedure to refine a synchronous system to an

LI system shown in Figure 1 as a flow diagram.

The steps to LIP refinement are as follows:

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 6

Collection of
synchronously
communicating

processes

LIP required
?

Floor planning
and

interconnect
routing

Encapsulation of
all modules

 with block of

control logic

Floor planning and
interconnect routing

Refinement of
long

interconnects

No

Yes

Floor planning
and interconnect

routing

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Done

Yes

No

Any Long
Interconnects ?

Fig. 1. Refinement steps to LI implementation

1. We start with a collection of synchronously communicating components. These components

can represent custom-made modules or IP cores.

2. Floor planning and interconnection routing are done to check for long interconnects. If all

communication can be done in a single clock cycle, there is noneed for LIP refinement.

3. If long interconnects are present then all modules are encapsulated with a block of control

logic. This encapsulation includes logic that controls theflow of the events, buffers, control

stations, repeater stations etc. to enable correct transmission of data.

4. Estimation using floor planning and interconnect routingis done again, this time with the

encapsulated processes to relocate and evaluate the delayson the long interconnects.

5. After finding the delays on the long interconnects, the designer can segment those long

interconnects with additional processes containing buffers, latches, forwarding stations, etc

to ensure that data is properly communicated through the long interconnects. Depending

on the delay of the interconnect, the events can be compared from the point they are placed

on the signal to the point they leave the signal.

6. Floor planning and interconnect routing is done again to ensure that no long interconnects

exist in the system.

Once these synchronous components are composed together toform a LI system, our next

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 7

goal is to check if the new LI system is functionally correct.Before we present the framework

for the validation of LI systems, we first look at the background of the two validation techniques

we use and present some preliminary definitions.

IV. BACKGROUND AND PRELIMINARY DEFINITIONS

In this section, we give the background for the SPIN model checker and we provide a small

introduction to functional programming, and we give the definitions of some terms we use

throughout the paper. We present definitions for LI refinement of single clock as well as multi-

clock systems.

A. SPIN background

SPIN [12] is a model checker used extensively for formal verification of systems. SPIN is used

to trace logical design errors and to check the consistency of specifications. Like most model

checkers, SPIN also verifies a system for all exhaustive paths. Its basic building blocks include

asynchronous processes, message channels, synchronizingstatements, and structured data. We

use these basic blocks to write synchronous models. The communication is done through shared

global variables. Since the processes run asynchronously in SPIN, we synchronize the execution

of all processes with aclock controllerin order to make our model behave synchronously. We

illustrate and explain in detail the model of the clock controller in section V-A.

B. Functional Programming

In [13], we presented a functional programming based framework for system modeling using

the Standard ML (SML) [14] language. Functional languages such as SML provide a clean

and simple semantic model, which performs all computation by function application, thereby

providing a more abstract notation to express computation.In our dynamic validation framework,

we model the idealized synchronous model as well as its LI version and compare both the models

by feeding input streams to both modules together and comparing their outputs for latency

equivalence. The reason this framework is used will become clear as we provide the definitions

of various components of the LIPs in the subsequent sections. All the definitions can be readily

recognized as recursive function definitions which can be directly mapped to SML.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 8

C. Preliminary Definitions

In this section, we show some of the definitions we use in the rest of the paper. LetV be the

set of data values and,T be a countable set of time stamps. Unless otherwise specified, in this

paper, we assumeT = N = set of natural numbers. An evente ∈ V × T is an occurrence of a

data value with a particular time stamp. However, in the systems we consider, a special event

called absent eventdenoted byτ that may occur2. Therefore, the set of all events is denoted

by E, whereτ ∈ E and for all othere ∈ E, e ∈ V × T . When e ∈ V × T it is called an

informative event. A signal s is defined to be a sequence of events, often denoted ase1e2e3 . . .

whereei ∈ E.

For the preliminary definitions, ifs is a signal,s[i] denotes theith event, hence eithers[i]

∈ V × T or s[i] = τ . The set of all signals is denoted byS. There are input signals, output

signals andstall signals. A stall signalst is a sequence of boolean events, i.e.,st[i] ∈ Bool×T .

The set of all stall signals is denoted byST . In our system, IPs are hardware modules that map

input signals to output signals, therefore in this paper we refer to them as processes. A process

p is a functionSn → Sm wheren, m ∈ N. A synchronous system consists of these processes

where communication and computation happens at the global clock. The communication among

these processes is assumed to be zero-delay and each processtakes one cycle for computation.

In the remainder of this section, we define a few terms and notations that are used in the paper.

Definition 1: Givens ∈ S ande ∈ E, we definee⊕ s = s′ wheres′ = e :: s, s.t.e is the first

element ands is the rest of the signal.

Definition 2: Given one tuple ofm elements and another ofn elements,
⊙

creates a tuple

of m + n elements.

< a1, . . . , an >
⊙

<b1, . . . , bm> = <a1, . . . , an, b1, . . . , bm>

Definition 3: Given two tuples ofn events andn signals respectively,
⊕

creates a tuple of

n signals with an event appended to each signal.

< e1, . . . , en >
⊕

< s1, . . . , sn > = < e1 ⊕ s1, . . . , en ⊕ sn >

Definition 4: Latency Equivalence: The two signalss1 ands2 are said to be latency equiv-

alent,s1 ≡e s2 ⇔ F(s1) = F(s2), where

2It may be caused due to lack of valid data in the producer or dueto the consumer’s request to delay a transmission

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 9

F : S → S be defined as,F(s) = σ(s, 1, n) and,

σ(s, i, n) =

σ(s, i + 1, n), if s[i] = τ

s[i], if (i = n)

s[i] ⊕ σ(s, i + 1, n), otherwise

F takes a signals as input and outputs a signals′ that contains noτ events, but preserves all

informative events. The helper functionσ takes the signals, n which is the length of the signal

s and the initial index 1 as parameters.σ is defined recursively with the following cases: If the

event at current index isτ , thenσ is called with the index incremented. If the event is notτ

and the index reaches the length of the signal, thenσ terminates by returning the last event,

otherwise the informative event at theith position is returned withσ called to check for the next

event.

Definition 5: Sequential composition: Given two processesp1: Su → Sv, p2: Sv → Sw and

s1, · · · , su ∈ S, we define the sequential operator◦ as:

p2 ◦ p1(s1, · · · , su) = p2(p1(s1, · · · , su))

Definition 6: Feedback composition[10]: Given a processp: (S × S) → (S × S) and

si, sj, sk ∈ S, we define the feedback operatorFBp(p) as:

FBp(p)(si) = sk wherep(si, sj) = (sj, sk)

The signalsj is an internally generated signal and the behavior of the feedback process is defined

using fixed point semantics [10]. For unique fixed point to exist, we assume all processes to

be monotonic and continuous. For simplicity, we define the feedback composition for a specific

process with two input and output signals, though it can be easily generalized for processes with

multiple inputs and outputs.

Definition 7: Vectorization functionΥn
i=1

(exp(i)) evaluates the expressionexp(i) for i from 1

to n.

Υn
i=1

(exp(i)) = < exp(1), exp(2), · · · , exp(n) >

where,exp(k) is a textual replacement ofi by k in exp(i).

In this work, we target thebridge-basedapproach, where all synchronous modules are encap-

sulated with anequalizer. An equalizer (E) is a process that givenn input signals and a stall

signal, it producesn output signals andn stall signals. The functionality of the equalizer can be

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 10

divided into three modes:

1. Disable mode: In this mode, the equalizer is stalled by another process through an input

stall signal. The equalizer sends absent events on all its output signals and enables all the

output stall signals using functionInsertStl(shown in Definition 8).

2. Absent mode: In this mode, the equalizer receives an absent event on one of its input

signals and its input stall is disabled. The equalizer sendsabsent events on all its output

signals and stalls only those processes from which it received an informative event using

function InsertAbt(shown in Definition 8).

3. Present mode: The equalizer receives informative events on all its inputsignals and its input

stall is disabled. It places these informative events on theoutput signals using function

InsertEvt(shown in Definition 8).

Definition 8: Equalizer (E) : Given s1, . . . , sn ∈ S andst ∈ ST , the equalizerE : (Sn × ST)

→ (Sn × ST
n) is defined as:

E(s1, . . . , sn, st) = eval(s1, . . . , sn, st, 1, . . . , 1)

where,

eval(s1, . . . , sn, st1 :: st2, i1, i2, . . . , in) =

if (st1 = false) then

if (∃n
j=1

(sj [ij]) = τ) then

InsertAbt
⊕

evalnextindex

elseInsertEvt
⊕

evalnextevent

elseInsertStl
⊕

evalnextstall

InsertAbt = < τ, τ, . . . , τ >
⊙

Υn
j=1

(exp1(j))

InsertEvt = Υn
j=1

(sj [ij])
⊙

< false, . . . , false >

InsertStl = < τ, τ, . . . , τ >
⊙

< true, . . . , true >

evalnextindex = eval(s1, . . . , sn, st, Υ
n
j=1

(exp2(j)))

evalnextevent = eval(s1, . . . , sn, st, Υ
n
j=1

(ij + 1))

evalnextstall = eval(s1, . . . , sn, st, Υ
n
j=1

(exp2(j)))

exp1(j) : if (sj [ij]) = τ thenfalse elsetrue

exp2(j) : if (sj [ij]) = τ then ij + 1 elseij

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 11

The equalizer is defined using a helper functioneval that takesn signals, a stall signal and

initial indices for each input signal and returnsn signals andn stall signals. The initial indices

are given assuming that the first event for each signal is at that position.

In the bridge-basedapproach,splitter and merger processes are placed for communication

of data needed in order to enable communication through the long interconnects. We compose

these two processes to form abridgeprocess as shown in Figure 2. Thebridgenot only ensures

correct flow of events from one process to another, but also ensures that the delay in between

the events is minimized. Eachbridge process has one input signal and one output signal.

Splitter Mergern- cycle
delay

Fig. 2. Bridge

The splitter and themerger process are connected byn interconnects wheren is the delay

on the long interconnect. Hence, thesplitter process hasn output signals. This process contains

simple placement logic for the placement of events on thesen signals. The splitter is implemented

at the output of a process, and it places events on the corresponding signals. The splitter only

places one input event on one of the output interconnects andabsent events are placed on the rest

of the signals at a particular time stamp. Assuming that there arei events on the input signal

of the splitter, at every cycle, theith event is placed on thenth signal based on a rotational

scheme. For example, if the delay on the interconnect is 3 cycles, then in the current cycle, the

first element will be placed on the first signal and absent events will be placed on the other two

signals. In the next cycle, the second event will be placed onthe second signal and absent events

will be placed on the first and third signals and for the third event it will follow the scheme.

After the third event is placed, in the following cycle, the fourth event will be placed on the first

signal again. This rotation scheme will continue for the rest of the events. This functionality is

illustrated by the formal definition shown below:

Definition 9: Splitter : Given s ∈ S, the SplitterH : S → Sn is defined as:

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 12

H(s) = sprd(s, n, 1)

where,

sprd(x :: y, n, i) =

place(x, n, i, 1)
⊕

sprd(y, n, 1),

if i = n

place(x, n, i, 1)
⊕

sprd(y, n, i + 1),

otherwise

insertAbt(n) =

τ, if n = 1

τ
⊙

insertAbt(n − 1), otherwise

place(x, n, i, j) =

x
⊙

insertAbt(n − j), if i = 1

τ
⊙

place(x, n, i − 1, j + 1),

otherwise

The splitter is defined using a helper functionsprd(s,n,1)that takes three parameters which

are the signals, delay on the interconnectn and initial index of the signals. sprd uses the

place function to send an event on the appropriate output signal. The functionplaceputs τ on

all signals usinginsertAbtexcept for theith signal on which it places theith event of the input

signal.

Contrary to the splitter, we implement amerger that takesn input signals and outputs one

signal. The merger also extracts one event from the input signals based on the rotational scheme

as illustrated earlier and places it on the output signal. The functionality of themergeris formally

defined below:

Definition 10: Merger: Given s1, · · · , sn ∈ S, the mergerM : Sn → S is defined as:

M(s1, . . . , sn) = ext((s1, . . . , sn), n, 1)

where,

rem(x :: y, n, i) =

x, if i = n

rem(y, n, i + 1), otherwise

ext((x1 :: y1, . . . , xn :: yn), n, i) =

rem((x1, . . . , xn), n, i) ⊕ ext((y1, . . . , yn), n, 1), i = n

rem((x1, . . . , xn), n, i) ⊕ ext((y1, . . . , yn), n, i + 1), otherwise

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 13

The merger is defined using the helper functionext that takes as parameters the signalss1, . . . , sn,

delay of the signaln and the index of the first signal.ext extracts the informative event from

the appropriate signal and places it on the output signal using therem function. rem returns the

event at theith position.

D. Multi-clock extension to LIP

The LI systems proposed earlier have been mainly targeting single clock systems where all

components operate on the same clock. We now consider extending the existing LI implementa-

tion for multi-clock systems where different components with different clocks are connected via

arbitrarily long interconnects. The need for a system with components having different clocks

arises when different IP blocks from different vendor are integrated in the same system. At this

time, however, we are only permitting the use of components with defined clock relations, also

called rationally clocked systems. By clock relation, we mean that there is a known ratio of the

evaluation cycle3 between different components. In the SML framework, the notion of clock is

defined by the evaluation cycle of the processes. This approach therefore makes it possible to

connect rationally clocked systems.

We modify our original refinement methodology for multi-clock LI design. Before encapsula-

tion of the processes, we add anInsert and aStrip process to each synchronous component of

the system. TheInsert process insertsn absent events for each event on the original incoming

signal wheren is the ratio of events on the incoming signal to the number of events evaluated

by the process in each cycle. The output of theInsert process is then given to the original

process. The formal definition of theInsert process is shown below:

Definition 11: Insert is a process, s.t.I(s) = s′ where

s′ = g(y, n) and,

f(n) =

τ, if n = 1

τ
⊙

f(n − 1), otherwise

g(x1 :: x, n) = (x1
⊙

f(n))
⊕

g(x, n)

We also place aStrip process at the output of the synchronous component. ThisStrip process

removes the extra absent events inserted by theInsert process. The formal definition of the

3In each evaluation cycle, a process consumes an input and produces an output.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 14

Strip process is given below:

Definition 12: Strip is a process, s.t.W(s) = s′ where

s′ = g(y, n) and,t(x1 :: x) = x

f(s, n) =

t(s), if n = 1

f(t(s), n − 1), otherwise

g(x1 :: x, n) = f(x1, n)
⊕

g(x, n)

Once these processes are composed with the original synchronous components, we can then

follow the earlier proposed refinement methodology.

V. FRAMEWORK FOR VALIDATION

It is essential to validate the functionality of the LI system that is formed by composing the

components of the LIP with the synchronous system. We propose an easy to use framework

for validating such LI systems. In this framework, we model the LI system along with its

synchronous idealization and provide the same input signals to both the systems. These input

signals can also be latency equivalent. We then model anEqcomparator process which is a

reduced version of the Equalizer process. Similar to the equalizer, theEqcomparator process

reads the informative events from the output signals of the two systems. The informative events

on these signals are compared and checked to be latency equivalent. In the case when an absent

event is seen on one of the output signals, it is discarded andthe next event is considered on

the same signal. The informative events on the two output signals are compared in sequence to

ensure correct functionality. The framework is shown in Figure 3.

Synchronous System

Result

LI System

Input signal

Eqcomparator

Fig. 3. LI Validation Framework

Using this framework, we can take any system and its LI implementation and validate them

for correct functionality by latency equivalence checking. This framework can be used for

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 15

any proposed LI protocol to ensure the correctness for the system. For example, the approach

proposed by Casu and Macchiarulo for optimization and usinga scheduling algorithm to control

the flow of tokens can be easily checked for correctness as thescheduling may change depending

on the change of functionality of the system.

We have validated various examples of LI systems using our framework with two different

approaches. We model a synchronous system and its LI implementation in PROMELA. Then we

formally verify it by placing an assertion in theEqcomparator process. The assertion property

states that the informative events from both systems are equal provided they are given the same

input sequence. We show how we implement the component required for refinement to LI system

in the following section. We also present another simulation based validation approach using

this validation setup in the SML framework.

A. SPIN based description

In SPIN, the communication among the processes is implemented through global shared

variables. A process may write to a variable and another may read from the same variable.

Since, the SPIN model checker targets mainly asynchronous systems, and to model a synchronous

system, we introduce aclock controllerprocess that controls the reading and writing of these

variables for every clock. Hence, we divide the working of the processes into two phases, the

read phase and the write phase. In the read phase, the processes read the values from its shared

variables and in the write phase, new values are written on those variables. It is assumed that the

communication is done in zero-time and all processes work concurrently as modeled. Temporary

variables such asdonei are used to denote the reading phase (when 0) or writing phase(when

1) of processPi. Unless all processes complete reading or writing, depending on the phase, the

clock controller will not change the phase.

In PROMELA, an equalizer process and its composition with its original process is modeled.

The PROMELA code for the equalizer is shown in Listing 1. In the implementation shown,

we assume that it is composed with a process with two inputs signals. The SPIN model of the

equalizer consists of two temporary buffers for each signalto store the values on the incoming

signals. We also declare variablevalidi which keeps the track of the number of informative

events in the buffer forsignali. In every clock cycle the equalizer reads a value during the

read phase and store the value in the temporary variable. As the value is stored, thevalidi is

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 16

incremented for that signal. In the write phase of the same clock cycle, the value is written on

the output provided the buffer count (i.evalidi) is greater than 1 for all signals. Otherwise an

absent event is placed on all output signals. The logic for the output stall signals of the process

are based on the number of informative events on the buffer (Functionality of the equalizer is

presented in Section IV-C). The PROMELA code for the Equalizer is shown in Listing 1.

Listing 1: PROMELA code for Equalizer

{Comment: The code for the equalizer is presented below.eventtypeA==1 means that event onsignalA is informative.

There are two temporary buffers for each signal.temp1A is the first temporary buffer for signal A andtemp2A is the second

temporary buffer for signal A. The variablestall == 1 denotes that the equalizer is stalled.}

proctype Equalizer(){

int valid1, valid2;

loop:

Synchronize reading with other processes.

/* START OF READ PHASE */

if

� (eventtypeA && valid1 == 0) → valid1++;

Store value intemp1A

� (eventtypeA && valid1 == 1) → valid1++;

Store value intemp2A

� (!eventtypeA && valid1 == 1) → temp1A = temp2A

� else → skip

fi;

/* Signal B can be written in a similar way */

Synchronize writing with other processes.

/* START OF WRITE PHASE */

if

� (valid1 > 0 && valid2 > 0 && ! stall) →

valid1–; valid2–;

Place events on output signals

� else→ Place absent events on output signals ;

fi;

Set output stall signals based onvalidi values

goto loop;}

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 17

The PROMELA code of the splitter process is shown in Listing 2. We assume that there is a

two clock cycle delay on the interconnect where the splitteris placed. A temporary variableplace

is defined that places the events from the input signals to either signal0 or signal1, depending

on the current value of theplace. These two signals connect the splitter and the merger. The

place variable keeps changing every clock cycle.

Listing 2: PROMELA code for Splitter

{Comment: The splitter is placed at the output of a synchronous module connecting to a long interconnect. For this

implementation we assume that the interconnect delay is twocycles. The synchronization is done when the module gives an

output. The placement variable calledplace is defined s.t whenplace == 0 then the event is placed onsignal0, otherwise

it is placed onsignal1 }

proctype Splitter() {

int place=0;

loop:

Synchronize with process.

if

� place == 0 → place=1;

Place event onsignal0

Place absent event onsignal1

� place == 1 → place=0;

Place event onsignal1

Place absent event onsignal0

fi;

goto loop;}

The PROMELA code of the merger process is shown in Listing 3. Based on the logic used

by the splitter, similar logic is used to read the values fromthe two incoming signals. Theplace

variable is offset in this module based on the delay on the interconnect. The values read from

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 18

the signals are then placed on the output.

EqP EqQ

2
cycle
delay

S
pl

itt
er

P

M
e

rg
er

Q

Clock
clk clk

s
i
 – signal i

sti- stall signal i

st1

s1

s2

s
2

st2

s3 s
4

st4

soutput

1-clock cycle

Fig. 4. LI system with Bridge

We formally verify the assertion for latency equivalence using the SPIN model checker for

an example with two processes as shown in Figure 4. The example is of a simple parity checker

that checks if the input is a 1 or 0. The output of the system is based on the previous input’s

value.

Listing 3: PROMELA code for Splitter

{Comment: The code for the merger is presented below. The merger is placed at the input of synchronous module on the

long interconnect. The synchronization is done when the module reads. Theextract variable is defined s.t whenextract ==

0 then the event is taken fromsignal0, otherwise it is taken fromsignal1 }

proctype Merger(){

int extract=0;

loop:

Synchronize with process.

if

� extract == 0 → extract=1;

Extract event fromsignal0

� extract == 1 → extract=0;

Extract event fromsignal1

fi;

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 19

goto loop;}

An alternative to using formal verification, we use a simulation based technique to validate

the LI systems in our proposed framework. We model this framework in SML and simulate for

various test vectors.

B. SML based LIP description

In this section, we describe the components of the LI framework and its implementation in

SML. A finite signal is modeled as generic list, whereas an infinite signal is written as delayed

function application (Listing A).

Listing A: Definition of finite and infinite signals

/* Definition of a finite signal */

datatype ’a signal = nil | :: of ’a * ’a signal

/* Definition of an infinite signal*/

datatype infseq = nil | cons of ’a * (unit→ ’a infseq)

In SML, for our convenience we formulate an event to be a list of two elements, where the

first element is the value and the second element identifies whether the event is an informative

event or an absent event (eg.ej = [3,1] is thejth event with 3 as the value and 1 as the identity of

the event4). Hence, a signal can be formulated as a list of events. (eg:si = [[1,1],[2,1],[3,0],. . .]).

Following the earlier mentioned refinement methodology, wefirst encapsulate the synchronous

components with an equalizer. The SML code of the equalizer is given in Listing B. The equalizer

reads one event from all the input signals of a process along with an event from the stall input.

It then checks if all the events at a time are informative. Thecheck for events is done through

41 corresponds to an informative event and 0 corresponds to anabsent event

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 20

the etypes and info functions. The functionality setting the stall values forDisable modeis

done by thestallon function and the output is given bye3. The stall values when the equalizer

is in absent event modeis set bystallset function and the output is given bye2. Finally, the

valid modeoutput is given bye1. The equalizer process is then sequentially composed with

the synchronous process to form the shell of the process.

Listing B: SML code for Equalizer

fun equalizer() = fn s => fn st =>

f (s, st, indexstart(length(s))

fun f([],st1::st,) = [] | f(,[],) = [] | f(, ,[]) = [] |

f(s,st1::st,i) =

let

fun etype(x1::x2) = x2| etype([]) = nil

fun etypes[] = [] |

etypes(x1::x) = etype(x1) @ etypes(x)

fun info [] = false |

info(x1::[]) = if (x1=1) then true else false |

info(x1::x) = if (x1=1) then info(x) else false

val allevents = e(s,i)/*Events from all signals*/

val allinfo = if info(etypes(allevents)) = true

then true else false

/*True when all events are informative*/

fun stalloff(0) = [] | stalloff(n) = [1] @ stalloff(n-1)

fun stallon(0) = [] | stallon(n) = [0] @ stallon(n-1)

fun flipval(x) = if x=1 then 0 else 1

fun stallset([]) =[] |

stallset(x1::x) = [flipval(x1)] @ stallset(x)

val e1 = [allevents,[stalloff(length(allevents))]]

val e2 = [tauevents(length(s)),[stallset(tags(allevents))]]

val e3 = [tauevents(length(s)),[stallon(length(allevents))]]

in

(case(st1) of

1 => (if allinfo = true

then ([e1] @ f(s,st,incindex(i)))

else ([e2] @ f(s,st,incempty(i,etypes(allevents)))))|

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 21

0 => ([e3] @ f(s,st,i)) —

=> [])

end

The next stage of the refinement methodology involves refining the long interconnects by

inserting the bridge process. The delay on the bridge is modeled by theDelayproc process

that just delays the events byn cycles, wheren is the delay on the interconnect (Listing C).

Listing C: SML code for Bridge

fun Bridge(n) =fn s => Delayproc(n) (merger(n) (splitter(n) (s)))

The SML implementation of thesplitter process is shown in Listing D. An input signal and

the interconnect delay is given to thesplitter process. One event is read from the input signal

andinsertevent function places the event from the input signal to one of the interconnects and

absent events are placed on rest of the interconnects. The events are placed in the rotational

scheme as illustrated earlier.

Listing D: SML code for Splitter

fun splitter(n) =fn s => f(s,1,n)

fun f([], ,) = [] | f(x1::x, i, n) =

let

fun insertevent(,j,0) = [] |

insertevent(y1,j,n) = (if n = j

then [y1] @ insertevent(y1,j,n-1)

else [[0,0]] @ insertevent(y1,j,n-1))

in

if (i = n)

then [insertevent(x1, i, n)] @ f(x, 1, n)

else [insertevent(x1, i, n)] @ f(x, i+1, n)

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 22

end

The SML representation of the merger is shown in Listing E. The extractevent function

extracts one event from all signals at a time. Extraction of events from the signals is done in

similar way as they are placed on the interconnects by the splitter.

Listing E: SML code for Merger

fun merger(n) =fn s => g(s,n,1)

fun g([], n, i) = [] | g(x1::x, n, i) =

let

fun extractevent([],n) = []| extractevent(x1::x,n) =

(case (n) of

1 => x1 |

=> extractevent(x, n-1))

in

if (i = n)

then [extractevent(x1,i)] @ g(x, n, 1)

else [extractevent(x1,i)] @ g(x, n, i+1)

end

We compose all the components of the system after the refinement. The input sequence of the

splitter and the output sequence of the merger are equivalent, since the order of events written

by the splitter on then output signals and the order of events read by the merger fromits n

input signals is the same. Therefore, the flow of events from the output of one shell across the

long interconnect to the input of the corresponding shell ismaintained. As the stall signals are

dependent on the events received in the previous cycle from the processes to which these stall

signals are connecting, they operate on a feedback semantics. We use the fixed point operator

defined in the preliminary section to implement the feedback(Listing F).

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 23

Listing F: SML code for Feedback

fun fb(p) = fixpt(p,s,[],length(s)+1)

/* The fixpoint is computed on event basis */

fun fixpt(q,s,sout,0) = sout| fixpt(q,s,sout,n) =

fixpt(q,s,(q s sout), n-1)

For the SML framework, we consider a larger case study of an adaptive modulator that consists

of three IPs: regulator, convolutor and analyzer (Figure 5). The regulator module takes an input

signal and a control signal and outputs based on the control signal by adding a threshold value.

This output is then multiplied with a masking value by the convolutor module. The output of the

system is given by the amplitude signal. The analyzer moduleoutputs the control signal based

on the input of the amplitude. Code listing for the Adaptive Modulator can be downloaded

from [15].

Regulator Multiplier

Analyzer

Bridge
Input signal

Mask signal

Amplitude signal

s4

s1 s2

s3

Fig. 5. LI based Adaptive Modulator

In order to check the correctness of the LI system, we setup the two systems as described

by our validation framework. We feed the same input sequenceto both models and validate

for the latency equivalence of their outputs. We have implemented this LI system for a finite

signal input as well as for an infinite signal input. For finitesignals, we can see the output of

the Eqcomparator process for as many input events given. In the case of infinitesignals, we

can check for the desired number of input values as computation for infinite values is based on

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 24

delayed function application.

In SML, we can also easily modify our aforementioned LI system to an LI system containing

components with different evaluation cycles.

The Insert process appends absent events to an event received from theequalizer process.

The number of absent events depend upon the ratio of the evaluation speed of the process and

the rate at which the inputs are received from theequalizer process. The SML code for the

Insert process is shown in Listing G.

Similarly, theStrip process receives one output event with extra absent events appended every

evaluation cycle of the system. The extra absent events are discarded by theStrip process.

Listing G: SML code for Insert process

fun Insert(n)= fn s1 => h(s1,n)

fun h([],) = [] | h(x1::x, n) =

let

val sig1 = [x1] @ tausall(n)

in

[sig1] @ h(x,n)

end

Both these processes are composed with the shells. The process Insert is applied to all the

input signals of the process. The parametern represents the number of cycles used by the process

compared to a single communication clock of the system. The SML code for theStrip process

is shown in Listing H.

Listing H: SML code for Strip process

fun Strip(n) = fn s1 => f(s1,n)

fun f([],) = [] | f(x1::x,n) =

let

fun dr [] = [] | dr(x::xf) = xf

fun drop ([],) = [] | drop(s,1) = dr(s)|

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 25

drop (s,i) = drop(dr(s),i-1)

in

drop(x1,n) @ f(x,n)

end

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework for the validation of LIsystems. The LI systems

along with their synchronous idealization can be modeled together and checked for latency

equivalence. We show two different techniques for validation using our framework. We model the

entire framework in PROMELA and formally verify using the SPIN model checker. The latency

equivalence is expressed as a formal property and verified for equivalence. We also show the

validation using the functional programming based simulation technique where the framework

can be modeled in SML and simulated for certain input vectors. The latency equivalence can be

modeled by comparing the output of the two systems.

In contrasting the two techniques, we find formal verification to be useful when we want to

exhaustively check the system for correctness for all possible paths. This approach may be time

consuming but would ensure complete validation of the system. On the other hand, the SML

based simulation had its own set of advantages. We found SML based simulation validation

to be an easier way to find the bugs in the protocol at an earlierphase of the design process

by simulating the framework with a set of test vectors and checking for the correctness of the

system. Also, due to the inherent denotational semantics offunctional languages, we found it

easier to formalize such a framework. We realized that the formal definitions of the components

of LIP could be naturally mapped to SML. Hence, it was easy to model the framework in SML.

Also, the component of the LIP were made generic such that they could easily be reusable with

any component. It also helped in making the models open to extension without making many

changes.

A possible extension would be to modify the LI protocols to GALS system such that they

could be easily validated in the framework.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 26

REFERENCES

[1] M. T. Bohr. Interconnect scaling - the real limiter to high performance ulsi.In IEEE Int. Electron Devices Meeting, pages

241–244, 1995.

[2] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Copingwith latency in SoC design.In IEEE Micro, Special Issue on

Systems on Chip, 22(5):12, October 2002.

[3] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli. A methodology for correct-by-constructionlatency

insensitive design. InProc. International Conf. Computer Aided Verification, pages 309–315, November 1999.

[4] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency insensitive protocols. In11th International

Conference on Computer-Aided Verification, volume 1633, pages 123–133, Trento, Italy, 07 1999. Springer Verlag.

[5] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The Theory of Latency Insensitive Design.In IEEE Transactions

on Computer Aided Design of Integrated Circuits and System, 20(9):1059–1076, 2001.

[6] M. Casu and L. Macchiarulo. A new approach to latency insensitive design. InDesign Automation Conference, 2004.

[7] M. Singh and M. Theobald. Generalized latency-insensitive systems for single-clock and multi-clock architectures. In

Design, Automation and Test in Europe (DATE’04), 2004.

[8] Syed Suhaib, David Berner, Deepak Mathaikutty, Jean-Pierre Talpin, and Sandeep Shukla. Presentation and formal

verification of a family of protocols for latency insensitive design. Technical Report 2005-02, Virginia Tech, 2005.

[9] Luca Benini and Giovanni De Micheli. Networks on chip: A new paradigm for systems on chip design. InDesign

Automation and Test in Europe, 2002.

[10] Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency and Time inModels of Computation. Morgan

Kaufmann, 2001.

[11] Edmund Clarke, Orna Grumberg, and Doron Peled.Model Checking. The MIT Press, 2000.

[12] Gerard Holzmann.The SPIN Model Checker. Addison Wesley, 2004.

[13] D. A. Mathaikutty, Hiren D. Patel, and Sandeep K. Shukla. A functional programming framework of heterogeneous model

of computation for system design. InForum of Design Languages (FDL 2004), 2004.

[14] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard ML - Revised. MIT Press, 1997.

[15] LIP FERMAT website. http://fermat.ece.vt.edu/LIP.html.

Syed Suhaib(IEEE Student Member) received his Master’s degree in Computer Engineering from the

Bradley Department of Electrical and Computer Engineeringat Virginia Polytechnic Institute and State

University in 2004. He is currently pursuing his PhD from Virginia Tech under the supervision of Dr.

Sandeep Shukla. He has presented his research accomplishments at the University Booth at Design

Automation Conference in 2004 and 2005. He was also a recipient of the Young Student Support Grant

at DAC 2004. Suhaib’s research interests include formal formal methods, requirement specification, agile

development tools, and synchronous languages.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 27

Deepak Mathaikutty (IEEE Student Member) is a Ph.D student at Virginia Tech. He received his

B.S. from the National Institute of Technology, Trichy in 2003 and M.S. from Virginia Tech in 2005.

Deepak’s research interest includes System Level Design Methodologies, Models of Computation/Multi-

MoC modeling and functional frameworks. His current work includes a metamodeling driven customizable

multi-MoC system modeling environment (EWD) and semantic preserving design refinements in SML-Sys

for System Design. Deepak has published around 15 articles in journals and conference proceedings and

his work is supported by the national science foundation (NSF) and by the center for embedded systems for critical applications

(CESCA).

David Berner (IEEE Student Member) received his Ph.D from the Universityof Rennes 1, France in

2006, the Diploma degree in Communication engineering and the M.Sc. in Communication and Media

Engineering from the University of Applied Sciences Offenburg, Germany in 2001 and 2002. He is

currently a temporary Assistant Professor at theÉcole Nationale Supérieure d’Ingénieurs de Bourges and

affiliated with the Laboratory of Fundamental Computer Science of Orleans, France (LIFO). Previously,

he has been with the French National Institute for Research in Computer Science and Control (INRIA).

He has been a visiting researcher at the Center for Embedded Computer Systems in the University of California Irvine from

2000-2001 and at the Virginia Polytechnic Institute and State University in 2003, 2004, and 2005. His research interests include

codesign of embedded systems, electronic system level design, formal methods, and security aspects.

Sandeep Shukla(M99-SM02) is currently an Assistant Professor of computerengineering with the

Virginia Polytechnic and State University, Blacksburg. Heis also a founder and Deputy Director of the

Center for Embedded Systems for Critical Applications (CESCA) and Director of the FERMAT Laboratory.

He was elected as a College of Engineering Faculty Fellow at the Virginia Polytechnic and State University.

He has authored or coauthored over 100 papers in journals, books, and conference proceedings. He

coauthored SystemC Kernel Extensions for Heterogeneous Modeling (Norwell, MA: Kluwer, 2004) and

coedited Nano, Quantum and Molecular Computing: Implications to High Level Design and Validation (Norwell, MA: Kluwer,

2004) and Formal Methods and Models for System Design: A System Level Perspective (Norwell, MA: Kluwer, 2004). He

has edited a number of special issues for various journals and is on the Editorial Board of IEEE Design and Test. Dr. Shukla

has chaired a number of international conferences and workshops. He was the recipient of the NSF PECASE Award for his

research in design automation for embedded systems design,which particularly focuses on system-level design languages, formal

methods, formal specification languages, probabilistic modeling and model checking, dynamic power management, application

of stochastic models and model analysis tools for fault-tolerant system design, and reliability measurement of fault-tolerant

systems.

