
University of Applied Sciences

Fachhochschule Offenburg

PIPELINING CONTROL OF A 32 BIT MICROPROCESSOR

David Berner

Advisor:

Prof. Dr.-Ing. Dirk Jansen

Reviewer:

Prof. Dr.-Ing. Werner Reich

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

ASIC Design Center

Badstrasse 24

77656 Offenburg, Germany

mail@davidberner.de

August 2002

Abstract

The ANTARES processor is a 32 bit RISC core for embedded systems developed
at the Fachhochschule Offenburg. This work evaluates the existing architecture
in order to extend it to work in pipelined mode. It describes the concept and
the implementation of a suitable pipelining design and evaluates the architectural
changes in order to integrate it. Adding pipelining to the ANTARES will speed
up the overall performance of the system by two – three times.

i

Table of Contents

List of Figures vi

List of Tables vii

Acknowledgments viii

1 Introduction 1

2 Pipelining 3
2.1 Laundry Example . 3
2.2 Pipelining and Computers . 4
2.3 Hazards . 7
2.4 Structural Hazards . 8
2.5 Control Hazards . 8
2.6 Data Hazards . 10

2.6.1 Read After Write (RAW) 10
2.6.2 Write After Read (WAR) 10
2.6.3 Write After Write (WAW) 11
2.6.4 Forwarding . 11

2.7 Implementation Approach . 12
2.8 Summary . 13

3 Antares 14
3.1 Architecture . 16
3.2 Instruction Set Design . 17

3.2.1 Instruction Coding . 17
3.2.2 Operation Types . 19
3.2.3 Prefix Mechanism . 20

3.3 Data Path . 21
3.3.1 ALU . 22

ii

TABLE OF CONTENTS iii

3.3.2 Registers . 23
3.4 Addressing . 24

3.4.1 Program counter . 24
3.4.2 Addressing Modes . 27

3.5 Control . 28

4 Conception 31
4.1 The Finite State Machine (FSM) 32

4.1.1 Single Mode . 32
4.1.2 Resources . 34
4.1.3 Multi Mode . 38

4.2 The Arbiter . 39
4.2.1 Structural Hazards . 39
4.2.2 Control Hazards . 40
4.2.3 Data Hazards . 43

4.3 Modifications to Other Units . 45
4.3.1 Mandatory Changes . 46
4.3.2 Optimizations . 47

4.4 Summary . 49

5 Implementation 50
5.1 Designing with VHDL . 50
5.2 FSM . 52

5.2.1 Add Wait States . 52
5.2.2 Insert Transitions . 55
5.2.3 Entity Interface . 56
5.2.4 Simulation . 57

5.3 Arbiter . 58
5.3.1 nextstate Process . 58
5.3.2 set io Process . 61
5.3.3 Entity Interface . 61
5.3.4 Simulation . 62

5.4 Control Unit . 65

6 Outlook 68

7 Conclusion 70

TABLE OF CONTENTS iv

A Antares32 Instruction Set 71
A.1 Explanations of Abbreviations . 71
A.2 Register Indices . 71
A.3 Flag-Register . 72
A.4 Instructions . 72

B Operation Types and Cycles 81

C VHDL Codes 87
C.1 Finite State Machine . 87
C.2 Arbiter . 95
C.3 Control Unit . 105

D Stimuli Files 139
D.1 Finite State Machine . 139

D.1.1 Basic Signals . 139
D.1.2 All Signals . 141

D.2 Arbiter . 143

Bibliography 145

List of Figures

2.1 Timing for Sequential Laundry 3
2.2 Schematic of Sequential Laundry Process 4
2.3 Pipelined Laundry Process . 5
2.4 Execution without Pipelining . 6
2.5 Ideal Pipelined Execution . 6
2.6 Real Pipelined Execution . 7
2.7 Read After Write Example . 11
2.8 Write After Read Example . 11
2.9 Write After Write Example . 12

3.1 Components of the ANTARES System 15
3.2 The Antares Architecture . 16
3.3 Composition of the 32 bit Prefix Register 21
3.4 Data Path . 22
3.5 Address Unit . 25
3.6 Non-pipelined Control Unit . 30

4.1 ANTARES Pipeline Requirements 31
4.2 Original FSM . 33
4.3 Schematic with several FSMs . 38
4.4 Structural Hazard . 40
4.5 Solved Structural Hazard . 41
4.6 Control Hazard . 42
4.7 Solved Control Hazard . 42
4.8 Solved CALL Control Hazard . 43
4.9 Data Hazard . 44
4.10 Solved DATA Hazard . 44

5.1 The Gajski-Y . 51
5.2 FSM with Wait States . 54
5.3 Interface of the FSM Module . 56

v

LIST OF FIGURES vi

5.4 Simulation of the FSM . 58
5.5 Schematic of the Multi Mode FSM 59
5.6 Interface of the Multi Mode FSM 62
5.7 Simulation of Multi Mode FSM 63
5.8 Serial Simulation for Comparison 64
5.9 Pipelined Control Unit . 67

List of Tables

3.1 Instruction Coding . 19
3.2 Categorization of Operation Types 20
3.3 Main ALU Functions . 23

4.1 States of the Original FSM . 32
4.2 Resource Usage . 35
4.3 Better Resource Usage . 37

A.1 Register Indices . 71
A.2 Flag Register . 72
A.3 Instruction Set Definition . 80

B.1 Operation Types and Cycles . 86

vii

Acknowledgments

Many thanks go to Prof. Dr.-Ing. Dirk Jansen who has been a great advisor to
me. He contributed a lot of ideas and personal effort into the ANTARES project.
It is just great to work with a professor who is not only willing to teach, but also
to learn things.

Special thanks also go to Sujan Pandey, my faithful ANTARES fellow and
friend.

I also like to thank the all the guys in the lab who supported me, Ingrid
Lange, the secretary who kept many boring tasks away, Christoph Bohnert who
always had an open ear when I needed someone to talk about some difficulties,
and Simon King for proof-reading.

Finally I should thank Mathilda who assisted me in so many ways.

viii

Chapter 1

Introduction

In the year 2002 a microprocessor does not really live up to its name any more.

In terms of performance, complexity, and power consumption the word Micro

just does not sound right at all. In the Formula 1 league of processors, the Intel

Pentium 4, the AMD Athlon or the IBM Power 4 with speeds around 2 GHz,

1000 MFlops, nearly 500 pins, and 70 Watts rather make us think of terms like

maxi, ultra or mega. Only maybe the size justifies the traditional naming? Not

quite. 200 mm2 and more make them look rather macro compared to the 12 mm2

of the Intel 4004.

Is this the end of all ”real” microprocessors?

No. The rapid growing market of mobile applications, emerging technologies

such as pervasive and ubiquitous computing still demand for the original virtues

of microprocessors: Small, cheap, strictly low-power while still offering high per-

formance. The stars of this world of embedded systems such as the ARM7 or the

Motorola DragonBall do not have the same prestige as the Pentium or Athlon

racers. Nevertheless they do important work in your cell phone, personal digital

assistant, car, mp3 player, camera, and washing machine, to name a few possi-

bilities.

Though embedded systems are used in an unrelated field, many of the con-

cepts developed for high performance processing can be translated to embedded

CHAPTER 1. INTRODUCTION 2

systems. These very same high-level concepts that often cause high-end pro-

cessor designs to become significantly bigger, can - when applied with different

parameters - help developers of embedded system cores to make these even more

compact. One of these elementary concepts is pipelining.

The ASIC Design Center at the Fachhochschule Offenburg, University of Ap-

plied Sciences has conducted considerable research and development in the field

of embedded systems. Within this research lay the emergent need for a better

performing processor core than the Design Center has. The Design Center de-

cided therfore to develop its own core. This RISC core for embedded systems

was called ANTARES and will be optimized for running C-programs. It soon

became clear that in order to optimize the system this processor should employ

an instruction pipeline.

This project is about development and implementation of a pipeline concept

that matches the given architecture and the evaluation of the architecture to find

out what changes the architecture has to undergo in order to integrate it

Chapter 2

Pipelining

The pipelining principle is widely known outside high technology. Most modern-

day production lines work in this way. Everyday examples can incorporate the

basics of pipelining. A common example is the laundry process.

2.1 Laundry Example

In the laundry example we assume, that there are several loads of laundry to be

washed. For each load of laundry we have to perform three steps (Figure 2.1,

Figure 2.2).

Wash
40 min

Dry
40 min

Iron
20 min

1 h 40 min

Figure 2.1. Timing for Sequential Laundry

The whole laundry process from dirty washing to clean and ironed takes about

1 hour 40 minutes. Anyone can see that there is still some room for improve-

ment. Since the washing machine is not used during the drying process, after we

have put its contents into the dryer, we can refill it straight away. While both

CHAPTER 2. PIPELINING 4

Figure 2.2. Schematic of Sequential Laundry Process

machines are busy we can start the ironing for another load that has just been

taken out of the dryer. Figure 2.3 shows the schematic for this process.

The optimal throughput of this process would be one load every 40 minutes.

This is the case when all units are busy. At the start and the end of the processing

the throughput will naturally be somewhat smaller. When comparing the two

laundry methods we must assume that the amount of loads to be processed is

fixed. For four consecutive loads, a non-pipelined laundry method would take 6

hours 40 minutes, whereas a pipelined version would need only 3 hours 40 min-

utes to process the same amount.

2.2 Pipelining and Computers

The pipelining mechanism for computers dates back to the late 1950s. At the be-

ginning of the 1980s it was still a technique solely uses in supercomputers. In the

beginning of the 1990s pipelining made its way down to the microprocessors and

CHAPTER 2. PIPELINING 5

Figure 2.3. Pipelined Laundry Process

had a great success there [HP02]. Since then there is no serious high-performance

microprocessor design that does not take advantage of it. For the Intel proces-

sors, the 80486 was the first using an instruction pipeline [Bre97].

In the microprocessor branch, pipelining means exploiting instruction level

parallelism. Each instruction, even the most simple, consists of several stages.

An instruction must firstly be read from memory (instruction fetch cycle, IF), it

must then be decoded (instruction decode cycle, ID) and then has one or many

execution steps (execution cycle, EX). These stages will use different units of the

processor. A pipelined processor therefore utilizes these units concurrently and so

increases the processor throughput. Multiple instructions overlap simultaneously.

Obviously the ultimate goal of pipelining is speed a processor up at little

extra cost and power consumption. But what is the actual speedup of a pipelined

design? For good results, the different pipeline stages should be balanced, i.e.

they all should take about the same amount of time. Each stage should take one

CHAPTER 2. PIPELINING 6

ID EXIFID EXIF ID EXIF

Figure 2.4. Execution without Pipelining

ID EXIF

ID EXIF

ID EXIF

Figure 2.5. Ideal Pipelined Execution

processor cycle (which is the case for most designs). With these assumptions, we

get an ideal

time per instruction =
time without pipelining

number of stages

.

The throughput of the system will be n times higher, where n is the number

of stages. That means the system will be n times faster. Of course practically

this is never the case as the stages are not perfectly balanced.

Since one pipeline stage usually takes one cycle, the number of cycles per

instruction (CPI) is a good way of measuring pipeline performance. The target

of each pipelined design is an ideal CPI of 1.0. This can only be reached when all

instructions consist of n stages and execution is uninterrupted. The instructions

in most of today’s designs differ in the number of their stages. It is obvious, that

a 16-bit instruction can be processed faster than a 32-bit instruction. Another

CHAPTER 2. PIPELINING 7

impediment in pipelining is that not all instructions are really independent of

each other. Dependencies between instructions can occur in many ways and will

cause problems for optimal pipelined execution. The real speedup of a pipeline

can be calculated as follows:

apipelining =
execution timeunpipelined

execution timepipelined

=
cycle timeunpipelined ∗ØCPIunpipelined

cycle timepipelined ∗ØCPIpipelined

Where cycle timepipelined = cycle timeunpipelined + toverhead + tbalance.

Overhead time is the time needed for additional pipeline control and balance

time is the time needed for balancing pipeline stages of different length.

ID EXIF

ID EXIF

ID EXIF
t
balance

t
overhead

Figure 2.6. Real Pipelined Execution

2.3 Hazards

The problems that can occur during pipelining are called ”pipelining hazards”.

They become more critical and more difficult to handle the longer the pipeline

becomes. This is the reason why the number of pipeline stages must be limited

to ensure efficient processing [HP90]. This section will describe briefly the basic

types of hazards that can occur and how they are dealt with.

CHAPTER 2. PIPELINING 8

2.4 Structural Hazards

Structural hazards are a result of bottlenecks within the architecture of the sys-

tem. They occur when the systems resources are inadequate for the demand. A

system with only one data bus for both instructions and data alike (as in the

ANTARES) will produce a structural hazard each time an instruction tries to

load or store a value and the pipeline wants to fetch the next instruction in the

same cycle. One possible solution for this problem is to introduce separate mem-

ories and buses for both instruction and data alike. Then both actions would be

performed independently but at the same time. However, a designer does not

always wish to avoid structural hazards by duplicating hardware. As a result he

would often get a highly redundant system whose units are again idle for most of

the time. The speed of the system will increase, but also at the same time costs

and power consumption will rise.

The basic approach of pipelining is rather to use existing units more efficiently.

So when a structural hazard occurs, we have to wait while one instruction is exe-

cuted until the needed resources are free. This mechanism requires the insertion

of wait states or NOPs. So long as pipeline wait states are intermittent, the

system will still run close to optimal and the resources will be used much more

efficiently. When there are many structural hazards (e.g. when each instruction

requires two memory accesses), it may make sense to duplicate a unit in order to

increase the usage of the other units.

2.5 Control Hazards

The pipelining principle is based on the assumption, that there is a steady flow of

instructions. Of course, there are instructions that, by definition, interrupt this

flow. Any kind of jump or function call or return instruction may want to re-

sume operation at another location in the code. This causes a problem, since the

processor will fetch the next instruction while decoding. Figure 4.6 on page 42

shows an example of a control hazard in the ANTARES processor.

CHAPTER 2. PIPELINING 9

The jump instruction may execute an instruction while the one that just has

been fetched from memory. What has to be done is a so called ”pipeline flush”.

The processing of instructions that have been issued after the branch must be

discarded. The pipeline is then stalled until the target of the jump is known.

While a pipeline is ”stalled”, no new instructions are issued. Once the target of

the branch is known, the next instruction can be fetched and normal operation

can resume (Figure 4.7). Depending on the length of the pipeline these control

hazards can be quite expensive in terms of execution time. Because of that,

there has been substantial research done in order to minimize the delay caused

by branches in the code (penalty minimization). One very popular method is

branch prediction. A certain logic tries to guess whether the branch is going to

be taken or not and according to that result the code at the branch target or the

code after the branch instruction is read. Another method is to start executing

both code segments, and discard the one that is not used. Both of these solutions

require important additional units. These result in more expensive development,

production and increase power consumption. Since these approaches will give

significant speedup only for longer pipelines where the branch target is known

before the end of the branch instruction, it does not make sense to use them in

a lightweight system like ANTARES.

Another, more simple solution is to assume, that the branch will be always

taken, or always not taken. Depending on the system architecture and on the

type of programs executed, there may be more taken branches or more branches

that are not taken. For a three-stage pipeline as in the ANTARES (Section 4)

the only alternative is to assume ”branch not taken”. This requires no additional

units and will not cause any delay for about 50% of the branches.

Function calls and returns are - of course - always taken. There we have to

look for other ways to optimize the resulting delay (Section 4).

CHAPTER 2. PIPELINING 10

2.6 Data Hazards

The third type of hazards that can happen are data hazards. These are the

result of unresolved data dependencies between instructions. For example an

instruction needs an argument for calculation which is not yet loaded from mem-

ory because the preceding load operation is still unfinished (Figure 4.9). In this

case the original order of read and writes to the operands changes because of

the overlap of instructions. Data hazards is the type of hazard, that is the most

difficult to handle. They may result from a special combination of instructions

while all other combinations work fine. If they are not detected, the execution

will continue as if everything were ok, but it will produce a wrong result - which

will be detected only much later or perhaps never.

Because of this, the detection of data hazards is crucial to the proper func-

tioning of a processor design. In order to do this, some unit has to check if the

argument of an instruction matches the target of a previously issued instruction

that has not completed yet. If this is the case, it has to wait until the result is

complete (Figure 4.10). The different types of data hazards can be classified as

follows.

2.6.1 Read After Write (RAW)

This is the most common type of hazard. An instruction tries to read a result

before a previous instruction has written its updated value (Figure 2.7). It always

occurs when we have several execution cycles preceding a STORE instruction or

if the result of an ALU operation is available only one cycle after it actually has

been generated.

2.6.2 Write After Read (WAR)

An instruction tries to write a value, before the previous value can be read by

another instruction (Figure 2.8). This can happen for combinations like a LOAD

instruction after some long arithmetic instruction.

CHAPTER 2. PIPELINING 11

T6T5T4T3T2t1

DFT1

DST2

IND

DST1

INF

IND

DST2LOAD

INFSTORE

RAW

Figure 2.7. Read After Write Example

T6T5T4T3T2t1

DST1

DFT2

IND

DFT1

INF

IND

DST2STORE

INFLOAD

WAR

Figure 2.8. Write After Read Example

2.6.3 Write After Write (WAW)

An instruction will tentatively write a value before a previous instruction has

written at the same location (Figure 2.9). The newer value will be overwritten.

This type of hazard occurs when there are several write cycles for one instruction

or where an ”out of order” execution is used.

2.6.4 Forwarding

For some architectures like the DLX [Mär01] the result of an ALU operation is

only written to the register in the cycle after the last execution cycle (write back

cycle). This architecture would produce RAW data hazards for all consecutive

ALU operations that use a result of the preceding instruction. Obviously this

would impede pipelining operation in an significant way. The most common

approach around this, is to add some forwarding logic [HP96] that is able to put

CHAPTER 2. PIPELINING 12

T6T5T4T3T2t1

DST1

DST2

IND

DST1

INF

IND

DST2STORE

INFSTORE

WAW

Figure 2.9. Write After Write Example

the result of the ALU directly into the input of the ALU when required. For the

ANTARES such logic is not required since in any case it can use the result of a

previous operation right away.

2.7 Implementation Approach

Knowing what pipelining is and what problems you are facing when dealing with

it is one thing. Resolving them is another. So we have to look what different ap-

proaches for implementations are available. One is unfortunately confronted by

the pauicity of solutions that can be realistically implemented. There is consider-

able literature available about advanced pipelining methods such as forwarding,

out of order execution, branch prediction, dynamic scheduling, and speculation

but actual solutions are not easy to find. Some implementations use registers to

keep the information for the processing and then just shift the contents of the

registers in order to advance in the pipeline [Mes96] [Web97]. This is a very sim-

ple solution and it avoids the trouble of having one Finite State Machine (FSM)

with an incredibly high number of states, but it adds absolutely no intelligence to

the system. There have to be special units that detect all exceptions and hazards

that can occur and change the flow of processing accordingly. Again this can

become very complicated, inconsistent and difficult to modify once implemented.

Also many solutions, especially the older ones, attempt to resolve the problem

on a very low level. They transfer it into microcode and are designing the actual

CHAPTER 2. PIPELINING 13

schematic. While this may lead to a very efficient solution in terms of mm2, it

will become very inefficient in terms of design time, readability and flexibility.

ASIC Design Center was seeking more a solution that matches the high level

design ability of VHDL in order to make a design that is simple, consistent but

still lightweight.

2.8 Summary

The pipelining principle permeates many everyday processes. It is well known for

computers and there are only few basic problems that can occur, though many

ways how to handle them exist in theory. The approach in overcoming pipelining

hazards is elementary linked to the basic architecture of the system. There is

great scope for improvement. Costs, performance, speed, power, size, flexibility,

and manageability are the most important ones but many of them would suggest

totally different approaches for the pipeline design. A pipelining design therefore

always represents a compromise.

Also the handling of pipelining hazards become more and more complex with

the length of the pipeline. Obviously the more steps you have, the more excep-

tions can occur and the greater the necessity for control. For the ANTARES

processor the most important design goals are power consumption and manage-

ability. Of course the other goals still have a certain role. Section 4 will evaluate

more accurately what the right option for this case is.

Chapter 3

Antares

The ANTARES is a microprocessor developed in the ASIC Design Center at

the University of Applied Sciences in Offenburg. ANTARES means ANSI C

Targeting Reduced Instruction Set Core for Embedded Systems”. This name

is quite self explanatory, though you might wonder about the term ”ANSI C

Targeting” in it. Of course many new processors can be programmed in the

C language. Even for embedded systems the higher level languages are becom-

ing more and more important since the costs in making larger programs in an

acceptable time-frame are becoming bigger and bigger. The special feature of

ANTARES is that the instruction set architecture was developed in a way, so

that C-programs would compile in a very compact manner and therefore would

run very efficiently. The specialty of this approach was not to make a smart little

processor, optimize it for its assembly code and then make a C-compiler for it

and try to optimize the compiler for the platform. In the ANTARES project we

tried to make the platform that was optimized for the C language in the first place.

Another reason for this order of proceeding becomes apparent when we look

at what ”designing a new processor core” entails. Figure 3.1 shows all the com-

ponents of the ANTARES system. We can see, that the actual VHDL core is just

one component of many. To have, for example, a simulator that works reliably

and can be used comfortably is nowadays just as important. A general ten-

dency is, that the software part will become more and more important while the

hardware part becomes rather easier to design since the tools are getting better.

CHAPTER 3. ANTARES 15

SOFTWARE HARDWARE

C-Compiler

Assembler

Simulator VHDL core

Additional
Components

(USB, A/D, Special Purpose)

C-Library
(malloc, floating point, ...)

Figure 3.1. Components of the ANTARES System

Without having high level design tools like VHDL the world of microprocessors

would look totally different today.

Since the software part has become more important it does not make sense any

more to first design the hardware and then tailor all the software for it. Rather,

it is better to start thinking about the software side and then try to implement

a hardware that supports it in an efficient way.

As the subject of this thesis is the pipelining, we will focus on the VHDL part

anyway. This chapter will provide some background about the actual architecture

of the ANTARES as we found it. It will not try to explain all the details, these

can be obtained at [PB01] and [Jan00] but only the most important facts and

what we think is necessary for pipelining.

CHAPTER 3. ANTARES 16

3.1 Architecture

When the architecture for the ANTARES was chosen, the focus was always on

making a small, balanced system, suitable for embedded systems. Since the bulk

of the targeted applications will have to handle 16 bit data, most optimizations

will go in that direction. Above that, 32 bit should be still natively supported.

The major decisions then were to have a 16 bit data bus and a strict 16 bit

instruction format. In order to be able to address large memories without trans-

lation a 32 bit address bus is used. The 16 bit ALU as well as the register file

with six 16 bit registers plus 32 bit indexed and stack registers are rather compact.

Instruction
Decoder

Control Unit Flag Register

FSM

C
ycle

O
u

tp
u

t R
eg

ister

Data Bus16

Address Bus Program
Counter

32
32

32
Address Unit

32

16

Register
File

Bus C

Data Path

ALU

16

16

Bus B

16

16

Bus A

Instruction Register

Figure 3.2. The Antares Architecture

Figure 3.2 shows a simplified schematic diagram of the overall ANTARES

architecture. It may look heterogeneous at first glance, having a 16 bit data bus,

32 bit addressing, 16 and 32 bit registers and supporting both 16 and 32 bit

instructions. When we try to validate the architecture on the background of a

compact core for embedded systems though, it all fits together quite well and

CHAPTER 3. ANTARES 17

forms altogether a compact and fast system. Of course we can see right away

some restrictions such as the 16 bit ALU, the small number of registers and the

16 bit data bus. But these will only be apparent for 32 bit operation which is

not the focus of our endeavors. For 16 bit operation however, these ”restrictions”

can in fact be seen as advantages, since they result in less code, less memory

requirements, a smaller chip and therefore also less power consumption.

3.2 Instruction Set Design

The system architecture comprises the most critical decisions to take and often

acts as a starting point. However this can not be regarded in isolation as the ar-

chitecture is directly linked to the instruction set as well as the compiler. Actually

we could regard the instruction set as the basis of the whole system, software and

hardware. Virtually every behavior of the system is based in the instruction set

definition.

One crucial decision was to maintain a strictly 16-bit instruction format. This

makes the instruction set design much more challenging since it fundamentally

restricts the coding space. However when we will succeed in making an efficient

and complete instruction set that adheres to a 16 bit format, we will gain far

greater efficiency. The whole of instructions are separated into six categories:

3.2.1 Instruction Coding

1. Type A: Instructions without extensions

These instructions take no argument. These are the most simple instruc-

tions, mostly having to do with setting, resetting and checking flags. There

is coding space for 256 instructions, but only 12 are actually used.

2. Type B: Instructions with 8 bit immediate field

These instruction have an 8 bit immediate argument, but do not address

any register. An example is CLA 08Ah. There is coding space for eight

instructions and all of it is used.

CHAPTER 3. ANTARES 18

3. Type C: Instructions working with one register

These are unary instructions like all kind of shifts and compare zero. Again

there is coding space for 256 instructions, but only 40 instructions belong

to this category.

4. Type D: Instructions with two registers addressed

This category combines all instruction with two register arguments like

ADD R1, R2. There is space for 32 instructions. Currently we have 30

instructions of this type, the two remaining slots are reserved for 16 and

32 bit division which may be eventually implemented in hardware at some

point.

5. Type E: Instructions with one register and an 8 bit immediate field

In this group are most of the immediate instruction like LDI 0A4h ABl.

The entire available space of 16 instructions is used.

6. Type F: Instructions with long offset

This last instruction type carries a 12 bit immediate field. Therefore the

coding space is so small, that there are only four instructions that can fit

into this group. They are absolute and relative jumps (JMP and JPR), a

subroutine call (CAL) and a load (LEA). Since in ANTARES all addresses

are aligned, we do not have to include the last bit of the address in the

coding. It is always zero. Therefore our 12 bit immediate field is effectively

a 13 bit address where the LSB is implicitly zero. This enables us to

address a quite large address space directly without having to use the prefix

mechanism (Section 3.2.3).

Table 3.1 shows the instruction coding of all the categories. The ”X” stands

for the actual coding space for the instructions, the ”R” means the coding of a

register argument and ”N” signifies the immediate information. The remaining

bits are the Huffman coding for the instruction type. We can see, that Type E and

F use the most expensive codes since they have to carry 14 bits of information.

Overall, the coding space is used very efficiently. Only in Type A and D is some

space left for further instructions. Table A.3 in Appendix A lists all instructions

with their coding, syntax, functionality, and description.

CHAPTER 3. ANTARES 19

Type Number Inst. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A 256 0 0 0 0 0 0 0 0 X X X X X X X X
B 8 0 0 X X X 0 0 1 N N N N N N N N
C 256 0 0 R R R 0 1 0 X X X X X X X X
D 32 0 0 R R R 0 1 1 X X X X X R R R
E 8 0 1 R R R X X X N N N N N N N N

8 1 0 R R R X X X N N N N N N N N
F 4 1 1 X X N N N N N N N N N N N N

Table 3.1. Instruction Coding

3.2.2 Operation Types

The instruction coding does already make a certain division of the instructions

into different categories. While working with the system it makes sense to make

a subdivision into categories that are a bit more differentiated. We created 16

categories of instructions and call them operation types. The operation type of

an instruction gives information about the basic type such as LOAD, STORE,

or CONTROL but also contains information about the number of registers used

or the type of data that is handled (word or long word). Table 3.2 gives an

overview over all operation types along with a short explanation. The operation

type of an instruction is detected by the control unit and this information is used

in the other units in order to make faster comparisons. For most evaluations it

is sufficient to know the type of the operation, we do not always have to decide

based upon the instruction itself.

Operation type Description

CONTROL for control operation.

INDXS1 push byte or word in the stack.

INDXF1 pop byte or word from the stack.

INDXS2 push long in the stack.

INDXF2 pop long from the stack.

REGREG0 16-bits ALU operation (one 16-bits register).

REGREG1 32-bits ALU operation (one 32-bits register).

REGREG2 16-bits ALU operation (two 16-bits registers).

CHAPTER 3. ANTARES 20

REGREG3 32-bits ALU operation (two 32-bits registers).

LOAD0 loading byte or word or long from mem. with

direct addressing mode.

LOAD1 loading byte or word from mem. with index

and stack relative addressing mode.

LOAD2 loading long from mem. with index and stack

relative addressing mode.

STORE0 storing byte or word or long in mem. with di-

rect addressing modes.

STORE1 storing byte or word in mem. with index and

stack relative addresing modes.

STORE2 storing long in mem. with index addressing

mode.

JUMP jump absolute and jump relative with condi-

tion.

Table 3.2: Categorization of Operation Types

3.2.3 Prefix Mechanism

There are two different ways of using immediate operations. When the 8 or 12 bit

immediate value is enough we do not get any problems. In some cases (especially

for addressing) we even can add the LSB implicitly, which lets us effectively use 9

or 13 bit respectively. Obviously we need another way to do the same operation

for all cases when this is still insufficient. This kind of problem is, of course, an is-

sue of the overall architecture, but it has to be resolved within the instruction set

definition. We need instructions that allow us to address the entire address space.

The solution is to load a prefix register beforehand with some value and con-

catenate this one with the actual immediate constant. There are three different

prefix operations: LPR, LPL, and LPH. Each of them takes an 8 bit value and

CHAPTER 3. ANTARES 21

Prefix Register

31 LPH 24 23 LPL 16 15 LPH 8 7 immediate 0

031

Figure 3.3. Composition of the 32 bit Prefix Register

positions it in a certain prefix register location. Figure 3.3 show the composition

of the prefix register. So with the help of these three commands plus the immedi-

ate field, we can use an entire 32 bit number. In order to make an absolute jump

to the upper regions of the 32 bit address space we have to use four instructions.

This may seem quite inefficient, but as the bulk of all jumps and addressing op-

erations will be close by, this is entirely practical. The closer a jump target is,

the less processor cycles will be wasted. That also means that close addressing

operations will be very fast, which is much more important.

The insertion of the prefix commands is transparent for the programmer as

soon as he uses the C language. The assembler in combination with the linker

automatically inserts these instructions whenever it is needed.

3.3 Data Path

The data path is the central processing part of the core. For ANTARES it is

kept rather compact. Its basic components are the ALU and the registers. The

ALU is connected to the registers via two 16 bit input busses (A-bus and B-bus)

and one 16 bit output bus (C-bus). The data bus is connected to the ALU. It is

read via the C-bus and written via the A-bus. Later (Section 4) we will see that

this is one major hinderance for pipelining. The B-bus is also connected to the

addressing unit via a multiplexer. Figure 3.4 shows the overall schematic.

CHAPTER 3. ANTARES 22

Bus B

Bus C

16

Data Bus

ALU

Bus A

16

16

16

S

X

DC

BA

FE

Figure 3.4. Data Path

3.3.1 ALU

As described before, the ALU is a fully 16 bit ALU. A 32 bit ALU would have

been too costly in terms of area and is not really needed for our targeted appli-

cations. We can extend the ALU to 32 bit without having to change either the

instruction set, nor the assembler or compiler in the future. The idea is that we

later have a whole family of processors that are all ANTARES compatible but

contain exactly the functionality that is needed for the specific application. The

whole software part, as a major part of the overall system, would not have to be

altered for any of these.

The basic functions of the current ALU are listed in Table 3.3. It includes

all major arithmetic, logic and unary functions. We even included a hardware

16 bit multiplication function. The result of this multiplication will be a 16 bit

CHAPTER 3. ANTARES 23

Arithmetic Logic Unary

C = A + B C = A & B C = 0
C = A – B C = A | B C = A
C = A × B C = A ⊕ B C = B
C = A + 1 C = A � B C = –A
C = A – 1 C = A � B C = !A

Table 3.3. Main ALU Functions

integer. This behavior reflects more or less the C behavior and therefore it is not

only pragmatic but also efficient. A hardware multiplier will not be needed in all

applications, but it is necessary, especially for handling floating points. Also the

multiplication units are not too big so we can afford to insert it by default.

As for the arithmetic functions, there is no division included. This is because

hardware division is quite a big unit and not needed very frequently. Since we

reserved coding space in the instruction definitions for the division instructions

we might, however, add them later as an optional unit.

A unit that is desirable for the logic operations would be a barrel shifter. It

is not included in the current design since we would rather keep it smaller than

complete with all possible functions. However, it is already clear, that for exten-

sive floating point processing a barrel shifter would increase the system speed.

This version of the processor, will be able to do floating point processing, but

it is not particularly well-suited for it. The barrel shifter could also become an

optional unit in a later revision.

3.3.2 Registers

The ANTARES processor has six 16 bit registers and a 32 bit indexed and stack

register. This means that registers are a precious good for the ANTARES. Of

course it is always nice to have many registers available, but since we only have 16

bit instruction coding, we cannot afford more that eight registers. Eight registers

can be coded with three bits. For operations with two operands this means that

CHAPTER 3. ANTARES 24

we need six bits for coding. If we use more than eight registers we would have

to use four bits for coding and this would exceed the possibilities of the 16 bit

instruction coding.

In order to still be able to use the registers efficiently, they are all general pur-

pose registers except the 32 bit stack register. Then we have six 16 bit registers

(ABl, ABh, CDl, CDh, EFl, EFh) which can also be used as three 32 bit registers

(AB, CD, EF). The last is the index register (X) which is a 32 bit general purpose

register.

The number of registers available is small, so we might get some swapping

overhead for complex expressions. This is a sacrifice necessary for the small chip

size and the compact code. However for most of the common code, it should be

sufficient and not impair performance.

3.4 Addressing

The Addressing unit is responsible for the correct setting and incrementation

of the program counter and for writing the correct value onto the address bus.

Figure 3.5 shows a detailed schematic diagram of the addressing unit. It gives a

minimal structure consisting only of a 32 bit register, a 32 bit adder and some

multiplexers. In the figure and the following detailed description, we already

assume a 32 bit B-bus. In the first implementation the B-bus was 16 bit, but

since it is clear now that we will change it to 32 bit, it does not make sense to

explain the old version. The 32 bit B-bus simplifies things tremendously and

speeds up the address unit . We can classify the functionality of the addressing

unit into two tasks: program counter and address bus, and categorize the different

modes that are possible.

3.4.1 Program counter

The program counter carries always the address of the current instruction that

is being processed. At the end of each instruction it is incremented and its value

CHAPTER 3. ANTARES 25

MUX

PC MUX

+ MUX

MUX

31 bit

Address bus

2

MUX

ADR_MODEPC_MODE

MUX

DATABUS IN

DATABUS OUT B BUS Immediate

FFF8

Figure 3.5. Address Unit

is put to the address bus in order to fetch the new instruction word. Apart from

this gerneral operation there are instructions that directly modify the program

counter. These are all instructions that change the normal flow of code such as

jumps, functions calls and returns, and the reset. The different operating modes

for the program counter are:

CHAPTER 3. ANTARES 26

1. Increment

Increment the program counter by two. This is the standard action in order

to proceed to the next instruction

2. Same value

The program counter keeps its current value. For any cycle where no in-

struction ID fetched or any other kind of manipulation takes place, the

program counter has to keep the current value.

3. Reset

The reset instruction (RST) sets the program counter back to the BIOS

start address (0FFF8h)

4. Immediate

The value of the immediate field is written into the program counter for all

absolute jumps and calls (JMP, CLA). When using the prefix register, this

may be a full 32 bit value.

5. Immediate + PC

For relative jumps and calls (JPR, CAL) the value of the immediate is

added to the program counter. The immediate value can also be negative

in order to be able to make jumps in both directions.

6. Low word from data bus

Writes the value of the data bus to the low word of the program counter.

Whenever the Program Counter is restored from memory, for example after

a function call, we need to write the value of the databus to the program

counter. Since the data bus is 16 bit and the program counter is 32 bit wide,

there are two modes: One for the low word and one for the high word.

7. High word from data bus

Write the value of the data bus to the high word of the program counter.

See above.

CHAPTER 3. ANTARES 27

3.4.2 Addressing Modes

The way the value on the address bus is composed depends upon the type of the

instruction and the cycle. There are seven possible ways of setting the address

bus. The decision on which possibility is taken, is made within the control unit.

Then it just gives a signal to the address unit that indicates the current mode.

1. Program Counter

The program counter is written to the address bus before an instruction

fetch can be performed.

2. B-bus

The value of the B bus is put on the address bus for standard indexed

operations like LDX, STX, and LXL. In this case, the value of a register

contains the address of the data of interest.

3. B-bus and Increment

This also indicates an indexed operation, but the actual address of the

register is incremented in order to address the next word. This mechanism

enables us to make long load and store instructions such as LXL and SXL.

Since the data bus is only 16 bit wide, we need two addressing cycles. First

we address the lower word and then the higher word.

4. Immediate

The value of the immediate is written to the address bus for the absolute

load and store instructions such as LDA and STA. For these instructions

the immediate carries the address information. In combination with the

prefix register we can address the full 32 bit address range.

5. B-bus + Immediate

This type is needed for stack relative addressing. For these cases, we load

the value of the stack register via the B-bus and then have to add the value

of the immediate to get the target address.

6. Low PC word to data bus

Writes the low word of the program counter to the data bus. This does not

CHAPTER 3. ANTARES 28

really write a value onto the address bus, but onto the data bus. Since the

result is the same (that we have a value on the databus) we count it among

the addressing modes anyway. Besides the coding of the control signals

for the address unit is made more compact and consistent. This is what

happens, when we store the content of the program counter to memory for

example for a function call (CAL, CLA).

7. High PC word to data bus

Writes the high word of the program counter to the data bus. Same as

above, only that the high word of the program counter is saved. Since the

data bus is 16 bit and the program counter 32 bit we need two cycles for

this.

3.5 Control

The controlling component is very important for any processor. For many designs

it is the most complex part of the design. The intruduction of pipelining will in

no way change this fact. Pipelining is basically just a way of smart controlling.

The non pipelined version of the control unit consists of the following units:

• Instruction register

In the instruction fetch cycle it reads the current value of the data bus. It

keeps this value for the decode logic during all later cycles of that instruction

.

• Decode logic

The decode logic takes the value from the instruction register and then

decodes it. There are actually two parts in decoding:

– Instruction decoding

Depending upon the input of the instruction register this unit will

deliver the instruction, its type, the values of the register arguments

and the immediate field if applicable.

– Cycle decoding

This unit takes the instruction and the type from the first decode stage

CHAPTER 3. ANTARES 29

and then evaluates the cycle output from the FSM in order to assign

the source and target register values on a per cycle basis.

• FSM

The Finite State Machine takes the instruction and the operation type from

the decode logic and gives as an output the cycle information.

• Flag register

Here the status of all the flags are stored in a register. Its information is

needed for the decoding and will be altered when requested.

• Output registers

The output registers store all information needed from other units such as

the ALU, addressing unit, and memory. They contain information about

the current instruction, its type, the current source and target registers, the

value of the immediate, and the read or write signal for the memory.

CHAPTER 3. ANTARES 30

IR

FL

FSM

CYC

EN_IF

PF,CD

Cycle DEC

OUT_REG
INS
OP

REG_TGT
REG_SRC1
REG_SRC2
IMMEDIATE

CYCLE

Instr DEC

READ, WRITE

Figure 3.6. Non-pipelined Control Unit

Chapter 4

Conception

Having evaluated the many different pipelining concepts for different architec-

tures we should use for the ANTARES processor, we must specify firstly the im-

plementation properties that should be incorporated into the core. Using these

characteristics we can then finalize the concept. In Figure 4.1 we can see that

there are different aspects that are important for our approach. Although some

of them point in a similar direction, it is impossible to satisfy all requirements

without finding a best-fit compromise.

ANTARES Pipeline

ConsistencySmall

Easy to implementEasy to understand

Fits into architecture

Figure 4.1. ANTARES Pipeline Requirements

CHAPTER 4. CONCEPTION 32

In the old control unit [PB01], the FSM was the unit that controlled the

actual state of the processor. Since pipelining can be seen as an intelligent way

of changing between states in different units, we could imagine some sort of

FSM that also takes over all the pipelining control. Since the decisions in an

FSM are made in a very transparent way, the solution would be consistent and

easy to understand. This concept would probably require the least number of

changes in the current architecture, so this is the natural choice. The size of

this implementation is not easy to estimate beforehand, but there is no apparent

reason to believe that it would become too cumbersome.

4.1 The Finite State Machine (FSM)

4.1.1 Single Mode

The existing FSM (Figure 4.2) consists of 15 states:

State name Description
INF Instruction fetch
IND Instruction decode
EXC0 Execute 0
EXC1 Execute 1
EXC2 Execute 2
EXC3 Execute 3
DFT0 Data fetch 0
DFT1 Data fetch 1
DFT2 Data fetch 2
DST0 Data store 0
DST1 Data store 1
DST2 Data store 2
STP Stop
ADC0 Address calculation 0
ADC1 Address calculation 1

Table 4.1. States of the Original FSM

When extending it to pipelined mode, they will be unchanged, but wait states

must be added. The FSM will go into a wait state each time it cannot proceed

CHAPTER 4. CONCEPTION 33

�������

�������

	�
��

�����

�����

�

�������

��

�

�

�������

�

�
�

�

�

� 	�
 �

�������

�

�

�

�

�

� 	�
 �

�������

�

�

���
 �

�

� 	�
 �
���
 �

���
 �

�
�

Figure 4.2. Original FSM

CHAPTER 4. CONCEPTION 34

to the next state when there is a resource conflict. Some cycles have to be

executed consecutively because they subdepend, and use the same resources.

This is termed control restrictions and there must not be any wait state inserted.

Control restrictions occur for:

• EXC1, EXC2, EXC3

• DST1, DST2

• DFT1, DFT2

In addition, it does not make sense to wait between INF and IND because we

will always be able to decode the instruction right after we fetched it.

Considering these restrictions we find out that the insertion of five wait states

(W1-W5) would be sufficient. The insertion of these additional states makes the

schematic diagram of the FSM more complex. It bevomes more confusing since

we also must add transitions to and from the wait states. The complete FSM

for pipelined mode is shown in Figure 5.2 on page 54. In order to make it work

properly we have to set the appropriate conditions to the transitions to and from

the wait states.

4.1.2 Resources

A more critical part of pipeline design is the definition of resources. The defi-

nition of the number and type of resources will directly determine the number

and type of pipeline stages we will have. This again inherently depends on the

architecture of the processor.

Our premise being that the changes in the architecture should be as small

as possible, we should first have a closer look at the ANTARES architecture,

evaluate the current units and their partitioning and then check if it makes sense

to introduce additional units in terms of cost/benefit.

The resources we discover in the current architecture are:

CHAPTER 4. CONCEPTION 35

• RAM/ROM

• Address bus

• Data bus

• ALU

• A-bus

• B-bus

• C-bus

• Decode logic

• Program counter

Now we can determine which instructions use which of these nine resources.

A transformation of the resulting table into transition conditions would then suf-

ficiently describe the resource restrictions and handling.

State RAM Address Data PC ALU A B C Dec
INF X X X
IND X

EXC0 X X O O O O
EXC1 O X X O X
EXC2 X X X X O X
EXC3 X X
DFT0 X X X X X
DFT1 X X X X X
DFT2 X X X X X
DST0 X X X X X
DST1 X X X X
DST2 X X X X X
ADC0 X X
ADC1 X X
STP

Table 4.2. Resource usage of the States (X:all cases, O:some cases)

CHAPTER 4. CONCEPTION 36

Evaluating the resource usage of the current design (Table 4.2), we can see

that the resources are used in a way which makes it very difficult to do pipelin-

ing. In order to define pipeline stages, we have to find states whose resources

are absolutely independent from others. Right now this would be the case only

for IND. Taking the current design as a base, we would get a two stage pipeline,

where only IND can be done in parallel to any other state. Assuming an average

of four stages per instruction, we would get an ideal CPI of 3.0 with pipelining

as opposed to 4.0 with no pipelining. A maximum speedup of 33% sounds ini-

tially quite good, but after factoring in penalties for branches, other hazards and

instructions of different lengh, there will be little overall gain.

The major drawback of this design is that the memory cycles can not be used

independently from the ALU cycles. There are two reasons for this:

1. The Program Counter is increased at the end of each instruction and its

value is given to the address bus.

This is an impediment for pipelining in general, since after the end of an

instruction there is not always immediately another instruction issued.

There are several ways to solve this. We could apply both, i.e. increase the

Program Counter and write its value onto the address bus at the beginning

of the INF cycle. This would create the greatest resource independence,

but we might generate timing problems while performing a 32bit addition

before the actual data can be addressed. Another solution would be to

increment the Program Counter at the end of each INF cycle and write its

value onto the address bus at the beginning instead. In this case we would

have less timing problems to worry about, however for operations working

with the Program Counter such as relative jumps or function calls, we have

to keep track of the changes done in advance to the Program Counter.

2. The data bus is read via the C-Bus and written via the A-Bus

This can be prevented by connecting the data bus directly to the register

file. For the data store cycles we then have to add some multiplexing logic,

CHAPTER 4. CONCEPTION 37

so that the register file can write two values simultaneously, one from the

data bus and one from the C-Bus. Of course data hazard detection would

prevent them from writing to the same register in the same cycle.

The new resource usage can be seen in Table 4.3 with these changes. This

resource distribution now permits a much better pipeline design. We can clearly

separate three resources:

1. Memory,

comprising RAM/ROM, address bus, data bus and program counter

2. The instruction decode logic

3. ALU,

comprising ALU, A bus, B bus and C bus

State RAM Address Data PC ALU A B C Dec
INF X X X X
IND X
EXC0 O O O O O O
EXC1 O X X O X
EXC2 O O X X O X
EXC3 X X
DFT0 X X X X
DFT1 X X X X
DFT2 X X X X
DST0 X X X X
DST1 X X X
DST2 X X X X
ADC0 X X
ADC1 X X
STP

Table 4.3. Improved Resource usage of the States (X:all cases, O:some cases)

We are now able to build up a three stage pipeline with an ideal CPI of 1.0

for three-stage instructions and 2.0 for four-stage instructions. That means a

maximum speedup of 100% for four-stage instructions and 200% for three stage

CHAPTER 4. CONCEPTION 38

instructions. Even if we sacrifice some processing time due to hazards and mixing

of instructions with different length, the gain is remarkable.

4.1.3 Multi Mode

We now have an FSM that respects resource restrictions. One FSM characteristic

is that it will always be in one certain state. In order to build up a three stage

pipeline, we should use three FSMs. This is the fundamental idea. If each FSM

respects the given resource restrictions, it will work absolutely self contained.

We only have to establish a priority hierarchy for all FSMs over the resources.

Figure 4.3 shows the basic schematic diagram of the multi mode FSM control.

Figure 4.3. Schematic with several FSMs

The introduction of the multi mode FSM is a very simple, but powerful

pipelining solution. Basically, it uses the FSM from the non-pipelined version,

CHAPTER 4. CONCEPTION 39

adds wait states and appropriate transition conditions. It is then easy to make

as many instances as there are pipeline stages and connect them to a unit that

controls the resource priorities. We can appreaciate the power of the concept

when it comes to changes to the architecture. They will only require changes in

the FSM-design. Since we have multiple instances of the same FSM, this step

will update the systems entire pipelining behavior. Another selling point is that

any person who understands the function of one FSM can make changes to the

system.

4.2 The Arbiter

Our design so far will be able to run several instructions in parallel. In Section 2.3

we took a look at the different types of hazards that can occur during pipelining

and it seems, that hazard handling is a major part of all pipelining designs. So

far we did not explicitly look at this problem in the ANTARES pipeline, but now

it is time to do so.

All hazards that have occured, or are about to occur, must be detected and

dealt with. In the multi mode FSM design we introduced a unit that controls the

priorities of the resource handling. This unit could be extended in order to be

able to detect and deal with all types of hazards. We call this unit an arbitration

unit or arbiter, since it adjudicates which FSM has priority over the resources

and can decide which FSM to halt.

Now let’s take a look at the different types of hazards that can occur during

program execution and check what steps we have to make in order to avoid them

or to handle them.

4.2.1 Structural Hazards

Structural hazards cannot be avoided. Since they originate from the structure

of the system itself, we could only get around them if we duplicated the corre-

CHAPTER 4. CONCEPTION 40

sponding parts of the system. This is not always an option. In the ANTARES

architecture, structural hazards could occur during pipelined operation when one

instruction stores something to memory, while simultaneously the processor wants

to fetch the next instruction (Figure 4.4). Looking at our design concept we real-

ize, that we can already handle these kinds of hazards directly within the FSM.

We introduced wait states with transition conditions into the FSM design. These

will take effect whenever certain resources are busy. So if a structural hazard

such as a double memory access or a double execution is about to occur, it will

transparently be dealt with by the multi mode FSM (Figure 4.5) without affect-

ing any other units.

Structural Hazards

EXC2EXC1INDINFSBL

t7 T8t6t5t4t3t2t1

INF

EXC1

DST2

IND

DST1

INF

IND

EXC0INDORI

EXC2ADL

INFSTL

Figure 4.4. Structural Hazard

4.2.2 Control Hazards

Control hazards occur whenever discontinuities take place in the order of code

execution. This is the case for all jumps and function calls. Control hazards

cannot be prevented, so we have to control what happens when they emerge.

There are several basic methods of doing this:

1. After the detection of the jump, all instructions that were issued after

CHAPTER 4. CONCEPTION 41

Structural Hazards

EXC2EXC1INDINFSTALLSTALLSBL

IND

t7 T8t6t5t4t3t2t1

STALL

EXC1

DST2

IND

DST1

INF

IND

EXC0INFSTALLORI

EXC2ADL

INFSTL

Figure 4.5. Solved Structural Hazard

the jump instruction are discarded. Execution will only resume after the

program counter is modified.

2. If it is clear that the jump must be taken (function call or return), it will

directly fetch the new memory address. This works only, if we ”know” in

advance that there is going to be a jump. We would need a longer pipeline,

which would increase the latency of the system.

3. If it is unclear whether the jump should be taken or not, we could fetch and

decode both instructions, the one after the jump and the one at the jump

target. Then we just discard the ”wrong” value and start working with the

new one as soon as it is known whether the jump has to be taken or not. In

addition to the longer pipeline we would need a second decoding unit and

an additional value from the memory this means the memory bandwidth

will increase.

4. As an alternative to the previous possibility, instead of fetching both in-

structions, we could guess if the jump is going to be taken or not and fetch

only that value. This solution is called ”branch prediction”. It would also

imply a longer pipeline latency while still having the risk, that the wrong

guess was made.

CHAPTER 4. CONCEPTION 42

control Hazards

ADC0INDINFJMP 0FA3h

t7t6t5t4t3t2t1

INF

INDINF

EXC0IND

EXC0INDANA ABH,EFL

EXC0ADD CDL,CDH

INFCZE ABH

Figure 4.6. Control Hazard

control Hazards

ADC0INDINFJMP 0FA3h

t7t6t5t4t3t2t1

STALL

STALLINF

EXC0IND

INDINFSTALLORA ABH,EFL

EXC1INDINFADD CDL,CDH
SBL AB,EF

INFCZE ABH

Figure 4.7. Solved Control Hazard

The ANTARES jump instructions are very short (only three cycles). This is

because we - in accordance with the RISC concept - do not make any comparisons

within the instruction but do it beforehand in a separate comparison instruction.

Because of this, the loss incurred if a branch has to be taken is so small that it

does not make sense to accept the greater drawbacks of more complex control

hazard handling. Instead we assume that the jump is not going to be taken and

if is, we will lose only two cycles (Figure 4.6 and Figure 4.7).

Function calls and return instructions are a bit more complicated, since here

you must write or read a value from the stack, modify the stack pointer and the

CHAPTER 4. CONCEPTION 43

control Hazards (CAL)

STALL

STALL

ADC1

t7

STALL

STALL

DST2

t6

STALL

STALL

DST1

t5

EXC0INDINFSTALLSTALLINFADL CD,EF
SUB ABh,EFh

t10t9t8t4t3t2t1

STALL

EXC2

STALL

EXC1IND

INFSTALLADD CDL,CDH

INFCAL 0AF2h

Figure 4.8. Solved CALL Control Hazard

program counter. For CLA and CAL we therefore lose six cycles before being

able to return to the normal pipelined mode (Figure 4.8).

4.2.3 Data Hazards

Data hazards occur whenever there are unresolved data dependencies between

instructions. Usually this is the case when an instruction wants to use the result

of a preceding instruction that has not yet been completed. These cases have to

be detected and we should insert pipeline interlocks in a way that ensures the

execution of an instruction only starts when all its arguments are determined.

In the ANTARES architecture it is much less likely, that data hazards will

occur than is the case in many other standard RISC architectures like the MIPS

[HP02] or the DLX [HP94] since there is no write back cycle to the register file.

That means, there is no need to make any forwarding construct because as soon

as the result of the operation is calculated, it will be available to succeeding in-

structions. This is another reason why the overall design is simple, small and

efficient.

The detection of a data hazard is quite straightforward. After an instruction

has been decoded, we have to check if any of the two source registers is identical

to any of the target registers of the other two pipeline stages. This can be done

quite efficiently using comparators. In Section 5 we will discuss the actual solu-

CHAPTER 4. CONCEPTION 44

tion in greater detail.

DATA Hazards

T6T5T4T3T2t1

EXC1

DFT2

IND

DFT1

INF

IND

EXC2ICL

INFLAL

Figure 4.9. Data Hazard

DATA Hazards

t6t5t4t3t2t1

STALL

DFT2

IND

DFT1

INF

IND

EXC2EXC1ICL

INFLAL

Figure 4.10. Solved DATA Hazard

The question is: in which cases does a data hazard occur? First of all, we

can state that it will definitely not occur for any three cycle instruction like

ADD, MOV, or SAR. Most of the other instructions could provoke data hazard.

Figure 4.9 and Figure 4.10 show the occurrence of a data hazard for a long load

and a succeeding long increment. We can see that the value that is incremented

is still the old value since the load has not finished yet. This example also shows

that there is more room for improvement. If we ensure, that the lower byte of

the result from a long operation is produced first and that the lower byte is used

first in calculation as well, we could in for these cases, resume the calculation one

cycle earlier. In the example in Figure 4.9 that would mean, that there is no data

CHAPTER 4. CONCEPTION 45

hazard at all. Using this mechanism we could avoid most of the data hazards for

four cycle instructions. Examining all ANTARES instructions we find that there

remain only few instructions that are likely to produce a data hazard:

1. Some load instructions

LEA, LBX, LDX, LDS, LXL, LSL, PPF, POP, PPL

2. Long Comparisons

CPL, CZL, CML, CGL, CQL, CEL, CNL

3. Some special instructions

PIN, PSH, PSL

For some of the other operations (mostly store instructions) it is still possible

to generate a data hazard, but not very likely. There are not many cases where

it makes sense to read a value, that just has been stored to memory. These are:

STL, SBX, STX, SBS, STS, SXL, SSL, PSF, and POT.

It turns out, that only 29 instructions out of 112 can possibly produce a data

hazard. Only 19 of them are likely to do so. This demonstrates the enormous

power of the ANTARES design. While handling these hazards, we could even

think about optimizing the case of a conditional jump combination. We could

take the jump already during the second execution cycle of the comparison, based

on the state of the conditional flag at that time. If the conditional flag does not

change during the second execution cycle, we just keep on going without any

hazard ocurring. If it does change, we perform the address calculation cycle of

the jump again. This will drastically reduce the probability of causing extra

delay between a long comparison and a jump. Of course this is an advanced

pipelining feature, which should only be included in the implementation when all

basic functions are working.

4.3 Modifications to Other Units

Up to now out topic has been the ANTARES pipelining concept. The major part

of the pipelining logic concerns the control unit. However, there are still other

CHAPTER 4. CONCEPTION 46

modifications to be done in the overall system that can be summarized here.

4.3.1 Mandatory Changes

First of all we should investigate critical changes, later then we can look at

other changes and optimizations that could or should be taken in order to make

everything smooth, fast, and consistent.

• Instruction Fetch

The most important changes affect the instruction fetch. In the previous

design, the Program Counter is incremented in the last cycle of an instruc-

tion and in the same cycle its value is written to the address bus. However,

in the pipelined mode we have to increment the program counter at the

end of each instruction fetch and write its value to the address bus at the

start. In order to do this, we must first of all make some important modi-

fications to the address unit. As the program counter now will always be 4

bytes ”ahead”, we have to take this into account when conducting program

counter relative operations such as relative jumps (JPR) or relative func-

tion calls (CAL). This will also generate the need for small but important

changes in the data path.

• Connect data bus to register file

This is another important change in the architecture. Without which, the

speedup by pipelining will become negligible. Just by connecting the data

bus to the register file instead of to the ALU, write instructions to memory

can be performed parallel to execution cycles.

• Add a second write port to the register file

In order to make an execution instruction completely independent from

a data instruction, we have to be able to read value from memory the

execution unit is used. Since both actions request a write to the registers,

a certain logic must be added that allows two writes to the registers in one

cycle. The arbiter will prevent the scenario where both writes are performed

on the same register.

CHAPTER 4. CONCEPTION 47

4.3.2 Optimizations

Without the above changes, pipelined operation will be of little benefit to

ANTARES. As we worked with the system, we discovered that many things

could speed the system up, or make it more consistent, or both.

• 32 bit B-bus

If the B-bus is made 32 bit wide, it will allow ANTARES to put a 32 bit

register value to the Program Counter or address bus within one cycle.

This will reduce the number of cycles for some important instructions like

PUSH, POP, RETURN, and all the indexed operations. Since having an

equal number of stages per instruction makes for efficient pipelining, this

change will enhance the design better in this direction. It will make the

execution of subroutines and complex calculations like for floating points

much more smoothly.

• Dedicated bus to the addressing unit

In addition to making the B-bus 32 bit wide, it would speed up pipelined

execution siginifcantly if we introduced a dedicated D-bus instead. This 32

bit bus would connect directly to the control unit, removing any dependen-

cies between addressing and data path access. The effort to implement this

change it not very important, also the increase in size is not significant. On

a process with five or six metal layers, an additional bus does not result in

much surface on the die. The gain on the other hand will be significant.

Also it will simplify the control, reducing resource restrictions.

• Control instructions with only two cycles

When the incrementation of the Program Counter and the addressing is

done in an INF cycle, we realize that all control instructions no longer need

an execution cycle. All the required actions happen within the control unit

and can be done during the instruction decode. This will not result in an

important general speedup, since all other instructions are longer, but it

might reduce the number of structural hazards that could occur for the

execution unit.

• Use carry for faster stack modifications

CHAPTER 4. CONCEPTION 48

Incrementing or decrementing the stack takes two cycles since we have

to perform a 32 bit addition with a 16 bit ALU. In most cases a 16 bit

addition would be sufficient. This would reduce the number of cycles for

these instructions by one. By evaluating the carry that has to be calculated

in the first cycle it can be easily detected whether this is the case or not.

If no carry occurs, we have nothing to add to the higher byte and therefore

can do other calculations in that time. We will again have faster pushs and

pops, and the function calls and returns will be sped up.

• Another optimization, not directly linked to the pipelining is the extension

of the register file. If we experience shortage of the number of registers, we

could think of a way to increase their number without having to increase

the number of bits for coding and therfore could still adhere to the 16 bit

instruction format. As for each instruction the size of the source and target

registers are known, we could introduce six additional 32 bit registers with

the same names as the 16 bit registers. We would then have the registers

A, B, C, D, E, and F both as a 16 bit and a 32 bit version. The control unit

could do the decoding to the correct size with no additional effort and the

performance of the system for large expressions or floating point operation

would increase significantly. Of course this change would mean quite some

additional size of the chip, but depending on the target application, it can

be worth to consider.

• Pipelining Optimizations

Apart from these general changes for speedup there are many small changes

in the pipelining control itself that could optimize the processing. Basically

these are optimizations for particular instructions such as load/store or

some long operations. With smart usage of the resources we can still do

some fine tuning here and maybe reduce some important cycles. But these

changes directly depend on the other, more important ones. It makes sense

to evaluate them in detail only once the rest of the system has been adapted.

CHAPTER 4. CONCEPTION 49

4.4 Summary

Having different pipeline designs in mind and considering the special architectural

properties of the ANTARES, we can propose a lightweight pipeline concept. It

will give considerable speedup to the processor while still keeping the core small,

ensuring it will remain suitable (and even more than before) to low-power appli-

cations.

However we dicsovered that integrating the pipeline into the core cannot be

done without performing some small but profound changes to the existing ar-

chitecture. Since we will have to modify the architecture anyway it makes sense

to do this in tandem with the other modifications that will speedup, purify, and

simplify the overall design.

Chapter 5

Implementation

5.1 Designing with VHDL

Having a good concept is all fine and dandy, but one can only appreciate its po-

tency once implementation starts. As the complexity of today’s systems increases

the level of abstraction within the implementation and design process will also in-

crease. While some designs today are implemented with classical VLSI tools and

microprogrammed controls [GAS90], we choose VHDL as a high level description

language. The price of a slightly larger design is very small in comparison to the

gain in productivity. Using VHDL in all parts of the design allowed us to explore

completely new possibilities and approaches.

This chapter will therefore describe the VHDL implementation of the pipeline.

VHDL is an excellent tool, which enables relatively comfortable handling of com-

plex problems and large designs. We will not go into the details of the language

here, but some knowledge of it would be of benefit [IEE88, Ten95]. The progress

of implementation can be very nicely visualized with the Y-chart from Gajski

(Figure 5.1). A behavioral description will help to describe the system just that

more easily. Once finished, we can introduce the structure. Portions of this struc-

ture can then again be described in the behavioral domain in order to transform

them later into a structural description. The implementation process will even-

tually come to the center. There we have a description of the design at all levels.

The physical domain is represented by the synthesis. This represents the masks,

CHAPTER 5. IMPLEMENTATION 51

Behavioral
Domain

Structural
Domain

Physical
Domain

Mask

Module Floorplan

Processor Floorplan

System Floorplan

FSM

Module

Processor
ALU

Leaf Cell

Transistor Logic

System
Description

Figure 5.1. The Gajski-Y

placements, and routing again on all levels.

VHDL fits very well into this process since it allows both a behavioral as well

as a structural description of a system. This makes the design process more con-

sistent and reduces the risk of errors resulting from conversion or transcription

problems.

When a complex new system is implemented, there is always the question

of where to begin. It is not always so easy to decide which part should be

implemented first. One could start with the interfaces or begin with a skeleton

structure of the whole system. For ANTARES we found it quite natural to start

CHAPTER 5. IMPLEMENTATION 52

from the core and add layers until we finally reached the outside. This has the

advantage, that the function can be verified at a very early stage and formal

problems as well as semantical errors can be detected as they occur.

5.2 FSM

The FSM, being at the core, was the first thing to be implemented. Using the ex-

isting FSM we first separated the logic of the FSM from actions. We grouped all

the transition conditions into one state-process, and grouped all the actions that

occur in certain states into another execution process. Both of these processes

are completely independent from the clock, so we added a small clocked process

that would trigger the transitions. We switched from a single process FSM to

this tree process design because it is much easier to deal with. In a three process

FSM you can modify a certain part or check a certain functionality much faster.

All the registered information is put into the clocked process so it is much easier

to keep control over the FSM. A single process design (when built up correctly)

can be a little bit faster than a three process design, but the complexity of our

FSM made the three process design the model of our choice.

Since a graphical presentation of a problem is often much more comprehensive

than a textual one, we drew the actual state diagram in Mentor FPGA Advan-

tage. After adding all the transition conditions into the graph, we were able to

generate VHDL code from the graph. This code was able to replace the state-

process of our FSM. Having an automatic path from a graphical view down to the

code helped us visualize the problem immensely. Now we can make modifications

in the graph, generate the code and then directly check the result in simulation.

5.2.1 Add Wait States

In order to make this FSM work in pipelined mode, wait states must be added.

It should always be possible to change into a wait state between two states that

use different resources. There is no need to insert a wait state between two states

CHAPTER 5. IMPLEMENTATION 53

that use the same resource (e.g. EXC1 and EXC2), nor does it make sense to

insert a wait state when there is no other state using this resource (like the IND).

Before inserting the wait states we should rearrange the states in a way that

ensures that all transitions proceed from top to bottom, except for the ones that

return to the INF state (Figure 4.2). We should always keep this structure when

inserting wait states as it will ultimately give us the number of FSMs that need

to be inserted.

In order to add resource wait states, we have to define firstly the resources

and then which state is using which resource. According to Table 4.3, we define

three resources and assign each state to the appropriate resources:

1. Memory:

INF, DFT0, DFT1, DFT2, DST0, DST1, DST2, ADC0, ADC1, EXC3

2. Decode: IND

3. ALU:

EXC0, EXC1, EXC2, EXC3

4. no resource: STP

This is a simplified version of Table 4.3, but it will work for most cases. Only

for some instructions like indexed operations will we have to make some special

handling, since they also use memory in the execution cycles. Now we can insert

a wait state whenever a resource change occurs. This is the case for:

• W1

after IND

before EXC0, EXC1, and ADC0

• W2

after EXC2 and IND

before DST1

CHAPTER 5. IMPLEMENTATION 54

EXC1

EXC2

IND

INF

W1

EXC0STP

EXC3

ADC0

W2

DST2

DST1

W3

DFT1DFT0

DFT2

W4

ADC1

DST0

W5

Figure 5.2. FSM with Wait States

CHAPTER 5. IMPLEMENTATION 55

• W3

after EXC2 and DST2

before ADC1

• W4

after DST2, EXC3, EXC2, ADC1, and IND

before DFT0, DFT1, DFT2

• W5

comes after the last cycle of each instruction

before instruction fetch

These five wait states are enough to resolve all resource restrictions. There

are some levels in the FSM where we did not insert a wait state. This is either

when a resource hazard can never occur (such as that between instruction fetch

and instruction decode) or if the resource is captured for several consecutive cy-

cles and should not passed to another instruction. The latter is the case for the

pairs EXC1+EXC2, DST1+DST2, and DFT1+DFT2. For these combinations

the resource has to stay with the same instruction.

5.2.2 Insert Transitions

Figure 5.2 now shows the FSM with our five wait states. It looks now much more

complicated than Figure 4.2 even though we added only five states. The main

reason for this is the number of transitions. Each additional state added several

transitions to the FSM. If we add the correct conditions, the FSM will solve all

possible resource restrictions.

The transition conditions can be added quite systematically. The condition to

reach the wait state is exactly the same as that to reach the next state, only that

the resource condition is added (e.g. and memory=used). The priority of this

transition has to be higher than the unrestricted one, then it will first check to

see if the resource is available, and only then evaluate the condition to proceed.

To get out of the FSM is exactly the same condition to get in. If the only way

CHAPTER 5. IMPLEMENTATION 56

out points to one state, it is enough to evaluate the availability of the resource. If

there are several input states and several output states - that means the state is

handling more than one resource, we have to be careful with the conditions. All

the conditions rely on the instructions and on the operation type. But since for

some operation types we have different cycles, it can happen that two instructions

go to a wait state based on the operation type, but look for different resources.

So for these cases we have to look carefully at the conditions.

5.2.3 Entity Interface

Now we have all the functionality, we should think about the external interface

of the unit. We have to define what inputs and outputs we really need. A simple

and orthogonal interface always simplifies the usage of a system.

Created By Mentor Graphics' HDL Designer Series Import
HDL using HDL2Graphics(TM) Technology
on - 09:10:56 26.06.2002
from - C:\temp\antares\pipe\control_fsm.vhd

current_st

by dberner on 26 Jun 2002

<enter diagram title here>

antares/control_fsm/symbol

-- ANTARES 32 bit Project ---
-- ---
-- Author: David Berner ---
-- CREATION: 14.06.2002 ---
-- MODULE: Control FSM ---
-- DESCRIPTION: Finite State Machine controlling the state ---
-- transitions for each instruction ---
-- ---
-- Modified: 26.06.2002 ---

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY antares;
USE antares.std_logic_arith.all;
LIBRARY antares;
USE antares.antares_definitions.all;

op

instr_dec

alu

mem

enable

Package List
ready

next_st

control_fsm

Declarations
Ports:

Title:

Path:

Edited:

User:

op : IN operation_type ;
instr_dec : IN instr_type ;
current_st : IN cycle_type ;
alu : IN std_ulogic ;
mem : IN std_ulogic ;
enable : IN std_ulogic ;
ready : OUT std_ulogic ;
next_st : OUT cycle_type

<enter project name here><company name> Project:

<enter comments here>

antares\control_fsm\symbol

Page 1 of 1Printed by david on 30.08.02 at 22:07:01

Figure 5.3. Interface of the FSM Module

Figure 5.3 shows the final interface of the FSM. We tried to make the inter-

face very small and transparent. Our FSM has six inputs and two outputs. Most

importantly, the next st is the output that indicates the next state, depending on

CHAPTER 5. IMPLEMENTATION 57

the current st input. Then it takes the name of the current instruction (instr dec)

and its type (op) in order to evaluate the transition conditions. It receives the

status of the allocated resources with the signals mem and ALU and so decides

whether to enter a wait state or not.

These signals would be enough to operate the FSM correctly, and ensure that

it respects the given resources. For pipelined operation, we added a enable signal

that orders the FSM to re-evaluate the next state and a ready signal as an output

which becomes true once the value of next state is determined.

5.2.4 Simulation

The functioning of the FSM is essential to the system. In order to verify the

functionality of the FSM design we conducted a simulation. The screen shot

of the simulation in Figure 5.4 shows its most important functionality. At the

beginning, the system is in reset mode. As current st is held on wait state 5, the

system does not advance. Once we release the reset, the FSM starts proceeding.

We also can see, that the next state variable goes into a wait state as soon the

resource is reserved. At this point, the next state is already determined and

will be effective at the clock’s next rising edge. The lower two signals show

the resource usage. The resource is marked as used (true) as soon as the FSM

detects that it will be needed in the next cycle. The resource is released at the

beginning of the next cycle i.e., when the actual cycle is using the resource and

the calculation of the next state can start.

Obviously, for non-pipelined operation we do not need the resource display.

What we can see is how often the resource is actually idle. In this example we are

using mainly instructions that access memory. Still we see that for some cycles

the memory resource is idle. The execution unit, however, is idle for most of the

time. This is exactly where we can get improvements with the help of pipelining.

CHAPTER 5. IMPLEMENTATION 58

Figure 5.4. Simulation of the FSM

5.3 Arbiter

The arbiter is one of the key components of pipelining. It should connect the

single FSMs, allocate the priorities for the resources and give a defined order of

proceeding when a hazard or exception occurs. In Figure 5.5 we can see the actual

wiring of the arbiter and its basic components. It consists of three instances of the

FSM (Section 5.2), a ”nextstate” process and a ”set io” process. The nextstate

process is a major part of the control system. It takes the outputs of the FSMs,

and in return provides them with the recent resource usage and the current state

as an input. The set io process takes the states of the FSMs as an input and

assigns the resulting output to the exterior of the entity.

5.3.1 nextstate Process

The FSMs themselves do not have a clock. They work quasi-asynchronously and

react to input changes such as current state, instruction, and resources. The

nextstate process gives an enable signal to one FSM at a time. Only after it

receives the ready signal from this FSM, can we be sure that the recalculation

of the result has been completed and we can then enable the next FSM. Once

CHAPTER 5. IMPLEMENTATION 59

control_fsm2
control_fsm

control_fsm
control_fsm1

instr_dec

current_st
mem

enable

instr_dec
current_st

mem

enable

control_fsm
control_fsm3

instr_dec

current_st
mem

enable

<company ame>

op
ins

write

cyc_adr
cyc_exc

en_adr

read

op

alu

en_exc

en_inf
op

alu

set_io
1

Path:
Edited:

op

alu

by david on 01 Sep 2002

 <<--

<enter comments here>

 <<-- more -->>

2

ready
next_st

reset
clock

nextstate

ready
next_st

ready
next_st

work\control_pipe\control_pipe_behave

Page 1 of 1Printed by david on 09/01/02 at 14:11:23

Figure 5.5. Schematic of the Multi Mode FSM

one FSM reserves a resource it will no longer be available for the other FSMs

that evaluate their states later. This resource handling is the reason why the

calculation of the next state can not be done in parallel by all of the FSMs. In

order to still be able to perform this action within one clock cycle, we use this

quasi-asynchronous structure, where within one clock cycle each FSM will be

asked for its result sequentially.

It is not easy to determine the ordering of the priority distribution. If for ex-

ample, a long load operation starts, we should not interrupt it by issuing another

load or instruction fetch. One solution would be to always give priority to the

instruction that was issued first. This does not cover all cases though, because

some instructions are longer than other. Therefore we really have to ensure that

an instruction, for example in DFT1 state, can immediately go to DFT2. Since

we did not insert any wait state between DFT1 and DFT2 the instruction would

even proceed to DFT2 even if the memory resource is blocked.

CHAPTER 5. IMPLEMENTATION 60

The solution is, to make several rounds in the resource handling. In a first

round, all ”must” resources are distributed, in a second round the remaining re-

sources can be allocated. Resource constraints exist for EXC2, EXC3, DFT2, and

DST2. The system basically behaves in a way, so that once a resource is taken

by a FSM, it is kept as long as needed. Once these constraints are satisfied, the

priority of resource distribution is no longer critical. The easiest solution (i.e.

that the order is always the same) will be fine. The result will be, that the first

FSM only goes into a wait state in order to satisfy a resource constraint. The

second will have to wait more often since the first always has priority over the

resource. The third only will get a chance to perform when neither of the other

FSMs is requesting the needed resource.

Since control hazards are not evaluated in the FSM itself, the arbiter must

take care of this too. The implementation is easy. Whenever an operation pro-

vokes a control hazard, it can be determined after the decode, if the jump has

to be taken or not. If it is not taken, nothing has to be done, if it is taken, or if

there is a CALL or return instruction which will always trigger a control hazard,

the previous fetched operation is discarded and the FSM goes into wait state W5.

Once the branch finishes, the FSM will go back to normal operation. This action

also ocurred in the first run of the resource distribution.

The multi mode concept of pipelining control works out quite well. Resource

handling is done by each FSM almost transparently for the arbiter, which must

only deal with a few exceptions. The other hazards can also be dealt with relative

comfort. One problem with this implementation however, is the fact, that the

runtime quasi-asynchronous resource checking of the states may become critical.

The evaluation of the FSM, from enabling to ready must be performed six times

within the one cycle. As the FSM is quite compact we estimate, however, that

this will not result in any problems and that this nextstate process will not lie

on the critical path of the system. A memory access or some of the ALU cycles

will probably reqire much more time.

CHAPTER 5. IMPLEMENTATION 61

5.3.2 set io Process

The second process was made in order to handle of the input and output signals

correctly. It is some sort of multiplexing logic without a clock that sends the in-

put signals to the correct FSM and sends the FSM output signals to the correct

entity outputs.

We receice the instruction and the operation type from the decode logic as

input signals. These signals should only reach the corresponding FSM during the

instruction decode cycle. For the rest of the instruction, they will remain the

same for this FSM.

Not all the output signals of the FSMs are relevant for the outside. The set io

process only sends the cycle and the instruction of that FSM to the outside that

is in some execution cycle. It also determines the enable signals for the ALU,

addressing unit, and instruction register. It will also generate the read and write

signals for the memory.

5.3.3 Entity Interface

The interface of the arbiter is, again, made minimal, so that it only sends signals

essential for the outside. At present it has four input and seven output pins.

In addition to the instruction and the type, which we already needed for the

FSM, the arbiter will read the clock as an input. The value of the current cycle

of the FSMs is held in registers and therefore a clock is needed. Also, there is a

reset signal in order to give the whole control a defined state at system startup.

The list of outputs represents the enable signals for the ALU, addressing, and

instruction register plus the cycle type of the ALU- and addressing-cycle. Using

the instruction information, the control unit will be able to decide what actions

have to be taken. Whenever there is a cycle accessing memory, an appropriate

read or write signal will also be generated by the arbiter. These can be connected

directly to the memory.

CHAPTER 5. IMPLEMENTATION 62

Created By Mentor Graphics' HDL Designer Series Import
HDL using HDL2Graphics(TM) Technology
on - 09:10:56 26.06.2002
from - C:\temp\antares\pipe\control_pipe.vhd

-- ANTARES 32 bit Project ---
-- ---
-- Author: David Berner ---
-- CREATION: 15.06.2002 ---
-- MODULE: Pipelining Control ---
-- DESCRIPTION: Control for pipelined operation ---
-- ---
-- Modified: 26.06.2002 ---

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY antares;
USE antares.std_logic_arith.all;
LIBRARY antares;
USE antares.antares_definitions.all;

<enter project name here><company name>

by dberner on 26 Jun 2002

Project:

<enter diagram title here>

antares/control_pipe/symbol

multi_mode_fsm

Package List

clock

reset

op

ins

cyc_adr

cyc_alu

en_alu

en_adr

en_inf

read

write

Declarations
Ports:

User:

clock : IN std_ulogic ;
reset : IN std_ulogic ;
op : IN operation_type ;
ins : IN instr_type ;
cyc_adr : OUT cycle_type ;
cyc_alu : OUT cycle_type ;
en_alu : OUT std_ulogic ;
en_adr : OUT std_ulogic ;
en_inf : OUT std_ulogic ;
read : OUT std_ulogic ;
write : OUT std_ulogic

Title:

Path:

Edited:

<enter comments here>

antares\control_pipe\symbol

Page 1 of 1Printed by david on 30.08.02 at 22:03:12

Figure 5.6. Interface of the Multi Mode FSM

5.3.4 Simulation

Though the structure is relatively straightforward, the arbiter and the state ma-

chine instances form a rather complex system. Functionality must be checked

on every level. VHDL simulation with ”Modelsim” from Mentor Graphics is a

convenient tool to help discover any kind of errors in the design.

Figure 5.7 shows an excerpt of such a VHDL simulation. It checks the general

system functioning. For each state machine we can see the instruction, operation,

the current cycle, and the anticipated next cycle. All FSMs start off from the

W5 state. We can see that for FSM1 the next state signal goes to INF right from

the beginning, blocking the memory resource, while the others stay in W5. Only

when the reset releases will cycle1 advance to the INF state. At the same time,

FSM2 is reserving the memory for the next cycle in order to be able to fetch an

instruction there.

In order to find out the quality of the pipelining, we can check the enable sig-

CHAPTER 5. IMPLEMENTATION 63

Figure 5.7. Simulation of Multi Mode FSM

nal of the address unit (en adr). Anytime when the addressing unit or memory

is busy, this signal is set to TRUE. In this simulation we can see, that once the

signal turns to TRUE after the reset, it actually never goes down again. This

also tells us, that for this combination of instruction, the memory resource will

limit the speed. Looking at the signal en exc tells us about the actual usage of

the execution unit. We can see that even though the memory sets a fixed limit,

for 50% of the time the execution unit is kept busy.

Another way of checking the performance and quality of the pipelining im-

plementation is the number of wait states that occur. The first FSM will only go

one time into a wait state. This is when FSM3 is in DST1 and must be advanced

CHAPTER 5. IMPLEMENTATION 64

to DST2, keeping the memory busy. FSM2 spends some more time in wait cy-

cles while FSM3 has a greater incidence of wait states. This simulation sequence

shows of course a somewhat more critical combination, as it uses many memory

instructions and contains a taken branch. We can compare the behavior of this

system to a system without pipelining we can take by looking at Figure 5.8. This

simulation has exactly the same sequence of instructions as for Figure 5.7, only

that we have sequential execution. If we measure the time taken from when the

NEG instruction is issued to the end of the SCF instruction, we can see a signif-

icant difference. Execution without pipelining takes 550 ns while the pipelined

control will do the same within 200 ns. This means a speedup of 175%.

Figure 5.8. Serial Simulation for Comparison

CHAPTER 5. IMPLEMENTATION 65

5.4 Control Unit

When we evaluate the existing control unit (Figure 3.6) for pipelined operation,

we can see, that there will have to be substantial changes. What we can use is the

instruction decoding part. The cycle decoding must be replaced since we can be

in serveral different cycles at the same time. We also have to change the external

interface since the data path and the addressing unit will operate concurrently

on different instructions. In order to minimize the inevitable changes done to the

other units, we have developed a control unit schematic diagram (Figure 5.9).

In this version, the decoding no longer depends upon the cycle. The result

of the decode unit is sent directly into the registers. We have now two main

register parts, one register containing the values needed for the execution unit

(EXC REG) and one register containing the values needed for the addressing

unit (ADR REG). The execution register contains the instruction, its type, two

source, one target register, and the immediate value (if applicable). For all long

operations, the data path expects the source and target registers to change be-

tween the cycles. This is because the ALU works with 16 bit registers, even when

the operations are 32 bit. This task has been done in advance by the cycle de-

code part. What we do now is insert a sort of multiplexer behind the execution

register, which, depending on the cycle and the instruction, will send the correct

target and source registers to the execution unit.

The register for the addressing unit contains primarily the control signals for

the addressing and program counter modes. It also contains the source and target

registers as well as the value of the immediate field.

The read and write signals for the memory control are directly generated in the

multi mode FSM. They are sent unbuffered to the memory. The values linked

directly to the instruction have to remain in the registers for the instruction’s

duration. This is done by the enable signals from the arbiter. They become

true whenever the decode cycle detects an instruction of the appropriate type.

Then the results of the decoding like instruction type, source and target registers,

CHAPTER 5. IMPLEMENTATION 66

and immediate field are stored into the registers and will not change until that

instruction finishes and another instruction of that type is issued. The control

unit tries to bundle as much intelligence as possible, by reducing the other units

to their ”stupid” functionality. This makes the design transparent and easy to

modify.

CHAPTER 5. IMPLEMENTATION 67

DECIR

FL

MEM_REG
READ
WRITE

FSM
CYC_ADR, EN_ADR

CYC

EN_IF

PF,CD

READ, WRITE

CYC_ALU, EN_ALU

MUX

ADR_REG
SELECT_ADDRESS

IMMEDIATE
REG_TGT
REG_SRC
REG_SRC2

EXC_REG
INS
OP

REG_TGT
REG_SRC1
REG_SRC2
IMMEDIATE

Figure 5.9. Pipelined Control Unit

Chapter 6

Outlook

We have not yet reached the very final version of the ANTARES. There are still

a number of steps to be taken before it is running reliably together with the

pipelining logic.

Before any changes to the actual architecture can be made, the existing non-

pipelined design must be thoroughly debugged, validated, and tested. At the

time of writing we are about to put a first version on FPGA. Then we will be

able to systematically test and verify all components and functions.

The architectural changes discussed in Section 4.3.2 can be implemented when

a valid design is finished. This can be done step by step. Connecting the data

bus directly to the register file and introducing a dedicated D-bus from the reg-

ister file to the addressing unit will reduce the more critical bottlenecks that will

arise during pipelined operation. Then the addressing unit must be rewritten in

a way, so that it only depends upon the signals delivered by the control unit.

These changes will also require reworking of the FSM, the addressing and parts

of the execution unit as they will reduce the number of cycles needed for many

instructions. Indexed addressing, in particular will become much faster.

After these basic but essential changes we can initiate some other changes

that, while not absolutely necessary, enhance the design. Some of them are more

local and do not require a lot of effort to implement such as changing the number

CHAPTER 6. OUTLOOK 69

of cycles for control instructions and the evaluation of the carry flag during stack

pointer incrementation. Other options such as the extension of the register file,

will necessitate more global changes within the assembler, compiler, and simula-

tion environment. However, they are worth considering since they will increase

access to a whole range of new applications that would otherwise run too slow.

Only when the architecture is fixed, when the length of the instructions is

known and when we removed the major dependencies and bottlenecks, can we

start to rework the pipelining control. Adjusting the FSM, checking control haz-

ards and at last detecting and handling data hazards will be the major steps.

Meticulous test procedures between these steps and, in particular, at the end will

conclude the overall process.

Since the changes are made from a fully functional design, we can simultane-

ously develop application and peripheral units for ANTARES. Since the external

interface and timing is not altered at all, we will be able to use these results as

soon as the pipelined advanced core becomes available.

Chapter 7

Conclusion

When developing the ANTARES microprocessor core, the focus was on making a

core that is compact, easy to handle, open for extensions, fast, small, and strictly

low-power. The introduction of the pipelining concept is just another step in this

direction.

In this project we developed a pipeline concept that fits into the current archi-

tecture. The high-level approach of using several independently operating Finite

State Machines that are coordinated by a superordinated unit proved to be valid

and could be verified in simulation. We evaluated the existing architecture in

order to integrate this concept successfully into ANTARES. Even though the

concept closely matches the system, it still requires some changes. In addition to

the mandatory changes, we illustrated other possible changes in order to avoid

critical bottlenecks.

Once the pipelined ANTARES is running silicon, it will not only be an exam-

ple of an interesting design or another finished university project, it will represent

a serious alternative for commercial microprocessor cores and maybe two years

from now it will operate one of your little portable devices without your realizing

it.

Appendix A

Antares32 Instruction Set

A.1 Explanations of Abbreviations

R1, R2 = 16 bit Registers: ABl, ABh, CDl, CDh, EFl, EFh

R(1&2) = 32 bit Registers: AB, CD, EF, X, S

FL = Flagregister (8 bit)

N12 = NNN

rrr = 3-bit Register Address

+/-N11 = signed N11

NNN0 = NNN shift left 1

NNN00 = NNN shift left 2

+/-N7 = signed N8

PC = Program counter

M(XXX) = Memory addressed by XXX

PR = Prefixregister (32 bit)

A.2 Register Indices

16 bit Register ABl ABh CDl CDh EFl EFh
32 bit Register AB CD EF S X

Index 000 001 010 011 100 101 110 111

Table A.1. Register Indices

APPENDIX A. ANTARES32 INSTRUCTION SET 72

A.3 Flag-Register

Bit Flag Description

7 Pd Power Down Mode, Busses in High Impedance, low clock

6 Se Sense, Hardware Sense Line

5 Ip Interrupt pending

4 Ie Interrupt enable

3 Pf Prefix Flag

2 Cd Conditional Jump Flag

1 OV Overflow

0 Cy Carry

Table A.2: Flag Register

All addresses are byte-counts. Constants and addresses with sign (+/–N7, +/–

N11) are processed sign-extended.

A.4 Instructions

Type A : Instructions without extensions

0000000000000000 HLT Nil 1⇒ FL.Pd Pd Enter Power Down Mode

0000000000000001 DIS Nil 0⇒ FL.IE Ie Disable Interrupt

0000000000000010 ENI Nil 1⇒ FL. IE Ie Enable interrupt

0000000000000110 RCF Nil 0⇒ FL.Cd Cd Reset Condition Flag

0000000000000111 SCF Nil 1⇒ FL.Cd Cd Set Condition Flag

0000000000001000 CSE Nil. Se⇒ FL.Cd Cd Copy Sense to Cd

0000000000001001 COV Nil OV⇒ FL.Cd Cd Compare if Overflow

0000000000001010 CCY Nil CY⇒ FL.Cd Cd Compare if Carry set

0000000000001100 PSF Nil S - 2⇒ S

Fl⇒M(S)[7:0]

- Push Flags on Stack

0000000000001101 PPF Nil M(S)[7:0]⇒ Fl

S+2⇒ S

Fl Pop Flags from Stack

APPENDIX A. ANTARES32 INSTRUCTION SET 73

Bin./Hex code Mnem Exten Function Flags Description

0000000000001110 NOP Nil Empty cycle Nil No Operation

0000000000001111 RST Nil 0000FFF8⇒ PC,

00000000⇒ PR,

00⇒ FL

Fl Reset PC

Type B : Instructions with 8-bit vector on Bus

00000001|NN PIN N8 IO(NN)⇒ A - Input of IO, NN on D-Bus

00001001|NN POT N8 A⇒ IO(NN) - Output to IO, NN on D-Bus

00010001|NN SWI N8 PC⇒ M(S) ,

M(NN0)⇒ PC,

S – 4⇒ S

- Software interrupt, PC on

Stack, Vector addr. in NN

00011001|NN LPR N8 NN⇒PF[15:8] Pf Load Prefix Register short di-

rect

00100001|NN CLA N8 S – 4⇒ S

PC⇒M(S), NN0⇒ PC

if Pf: PF[31:8]&NN⇒PC,

0⇒ Pf,

Pf Subroutine call absolute

00101001|NN RET N8 M(S) ⇒PC; S+NN ⇒S

If Pf: PF[31:8]&NN⇒S

0⇒ Pf

Pf Return from subroutine, cor-

rect stack pointer,With prefix

00110001|NN LPH N8 NN⇒ PF[31:24] Pf Load Segment high byte

00111001|NN LPL N8 NN⇒ PF[23:16] Pf Load Segment low byte

Type C: Instructions working on one register

00rrr010|00 CLR R1 0⇒ R1 Fl Clear registers

00rrr010|01 INV R1 Inv(R1)⇒ R1 - Invert bit wise

00rrr010|02 NEG R1 Inv(R1) + 1⇒ R1 - Two’s complement of R1

00rrr010|03 INC R1 R1 + 1⇒ R1 Cy,Ov Increment

00rrr010|04 DEC R1 R1 – 1⇒ R1 Cy,Ov Decrement

00rrr010|05 SAR R1 R1 >>1, R1[14]⇒R1[15]

R1[0]⇒Cy

Cy Shift Arithmetic Right

00rrr010|06 SAL R1 R1[14:0] <<1,

R1[15]=R1[15], Cy⇒R1[0]

- Shift Arithmetic Left

APPENDIX A. ANTARES32 INSTRUCTION SET 74

Bin./Hex code Mnem Exten Function Flags Description

00rrr010|07 SLR R1 R1>>1, 0⇒R1[15] - Shift Logical Right

00rrr010|08 SLL R1 R1<<1, 0⇒R1[0] - Shift Logical Left

00rrr010|09 SRC R1 R1[15:1]⇒R1[14:0],

Cy⇒ R1[15]

- Shift log. right with Carry

00rrr010|0A SLC R1 R1[14:0]⇒R1[15:1],

Cy⇒R1[0]

Cy Shift log. left with Carry

00rrr010|0B IVC R1 Inv(R1)+Cy⇒R1 Cy Invert with Carry

00rrr010|0C SWH R1 R1[7:0]⇒ R1[15:8] - Swap to high byte

00rrr010|0D SWL R1 R1[15:8]⇒ R1[7:0] - Swap to low byte

00rrr010|0E GFL R1 FL⇒R1[7:0]

0⇒R1[15:8]

- Get FL to R1

00rrr010|0F SFL R1 R1[7:0]⇒FL all FL Set R1 to FL

00rrr010|10 CPT R1 Parity(R1)⇒ Cd Cd Calculate Parity of R1

00rrr010|11 CPS R1 If (R1>0): 1⇒Cd Cd Compare positive

00rrr010|12 CZE R1 If (R1=0):1⇒Cd Cd Compare if zero

00rrr010|13 CBI R1 If R1[7]: FF⇒R1[15:8] - Convert Byte to Int

00rrr010|14 CMI R1 If (R1<0):1⇒Cd Cd Compare if negativ

00rrr010|15 CIL R(1&2) If R1[15]:FFFF⇒ R2

Else 0000⇒ R2

- Convert Int to long

00rrr010|23 JPX R(1&2) If Cd : M(R1)⇒ PC - Jump conditional indexed

00rrr010|24 CLX R(1&2) S–4⇒S

PC⇒ M(S), M(R1)⇒ PC

- Call indexed

00rrr010|25 PSH R1 S – 2⇒ S, R1⇒ M(S), - Decrement Stack Pointer,

R1 on Stack

00rrr010|26 POP R1 M(S)⇒ R1, S + 2⇒ S - Get R1 from Stack, Increment

Stack Pointer

00rrr010|27 PSL R(1&2) S–4⇒S,

R(1&2)⇒ M(SI)

- Decrement Stack Pointer long,

Push combined R(1&2) on

Stack

APPENDIX A. ANTARES32 INSTRUCTION SET 75

Bin./Hex code Mnem Exten Function Flags Description

00rrr010|28 PPL R(1&2) M(S)⇒R(1&2)

S + 4⇒ S

Cy, Cd,

Ov

Pop Data Long to combined

R(1&2), Increment Stack

Pointer long

00rrr010|30 CRL R(1&2) 0⇒ R(1&2) All Fl Long clear

00rrr010|31 IVL R(1&2) Inv(R(1&2))⇒ R(1&2) Fl Invert bitwise long

00rrr010|32 NGL R(1&2) Inv(R(1&2))+1⇒ R(1&2) Fl Negate long

00rrr010|33 ICL R(1&2) R(1&2)+1⇒ R(1&2) Fl Increment long

00rrr010|34 DCL R(1&2) R(1&2)-1⇒ R(1&2) Fl Decrement long

00rrr010|35 ARL R(1&2) R(1&2)>>1,

R2[15]⇒R2[14]

R2[0]⇒Cy

Cy Arithmetic right shift long,

keep sign

00rrr010|36 ALL R(1&2) R(1&2)<<1,

R2[15]⇒R2[15],

R1[15]⇒R2[0],

0⇒ R1[0]

- Arithmetic left shift long, keep

sign

00rrr010|37 LRL R(1&2) R(1&2)>> 1, Cy⇒ R2[15],

R2[0]⇒R1[15]

Cy Logical right shift long with

carry

00rrr010|38 LLL R(1&2) R(1&2) << 1, Cy⇒ R1[0],

R1[15]⇒R2[0]

Cy Logical left shift long with

carry

00rrr010|39 CPL R(1&2) If R(1&2) > 0: 1⇒ Cd else

0⇒ Cd

Cd Compare positive long

00rrr010|3A CZL R(1&2) If R(1&2) = 0: 1⇒ Cd else

0⇒ Cd

Cd Compare on Zero long

00rrr010|3B CML R(1&2) If R(1&2) < 0: 1⇒ Cd else

0⇒ Cd

Cd Compare on Minus long

Type D : Instructions with two Registers addressed

00rrr011|0|0rrr MOV R1, R2 R1⇒ R2 - Transfer

00rrr011|0|1rrr MVL R(1&2)

R(3&4)

R(1&2)⇒ R(3&4) - Move long

00rrr011|1|0rrr ADD R1, R2 R2 + R1⇒ R2 Cy, Ov Add

APPENDIX A. ANTARES32 INSTRUCTION SET 76

Bin./Hex code Mnem Exten Function Flags Description

00rrr011|1|1rrr ADL R(1&2),

R(3&4)

R(1&2)+R(3&4)⇒R(3&4) Cy, Ov Add long

00rrr011|2|0rrr LXL R(1&2),

R(3&4)

M(R1&R2)[31:0]⇒R(3&4) - Load long indexed

00rrr011|2|1rrr ANL R(1&2),

R(3&4)

R(1&2) AND R(3&4)⇒
R(3&4)

- AND long

00rrr011|3|0rrr SUB R1, R2 R2 – R1⇒ R2 Cy, Ov Substract

00rrr011|3|1rrr SBL R(1&2),

R(3&4)

R(3&4)-R(1&2)⇒ R(3&4) - Substract long

00rrr011|4|0rrr SXL R(1&2),

R(3&4)

R(3&4)⇒M(R1&R2)[32:0] - Store long indexed

00rrr011|4|1rrr ORL R(1&2),

R(3&4)

R(1&2) OR R(3&4) ⇒
R(3&4)

- OR long

00rrr011|5|0rrr ANA R1, R2 R2 AND R1⇒ R2 - Logical and bit wise

00rrr011|5|1rrr CGL R(1&2),

R(3&4)

If (R(1&2) > R(3&4))

1⇒ Cd, else 0⇒ Cd

Cd Compare Greater long

00rrr011|6|0rrr ORA R1, R2 R2 OR R1⇒ R2 - Logical or bit wise

00rrr011|6|1rrr CQL R(1&2),

R(3&4)

If (R(1&2) ≥ R(3&4))

1⇒ Cd, else 0⇒ Cd

Cd Compare Greater or Equal long

00rrr011|7|0rrr XRA R1, R2 R2 XOR R1⇒ R2 - Logical xor bit wise

00rrr011|7|1rrr XRL R(1&2),

R(3&4)

R(1&2) XOR R(3&4) ⇒
R(3&4)

Fl XOR long

00rrr011|8|0rrr CEQ R1, R2 (R1 = R2)⇒ Cd=1 Cd Compare if equal

00rrr011|8|1rrr CEL R(1&2),

R(3&4)

If (R(1&2) = R(3&4))

1⇒ Cd, else 0⇒ Cd

Cd Compare Equal long

00rrr011|9|0rrr CNE R1, R2 (R1 != R2)⇒Cd=1 Cd Compare if non equal

00rrr011|9|1rrr CNL R(1&2),

R(3&4)

If (R(1&2) <> R(3&4))

1⇒ Cd, else 0⇒ Cd

Cd Compare Non Equal long

00rrr011|A|0rrr CGT R1, R2 (R1 > R2)⇒Cd=1 Cd Compare if greater

00rrr011|A|1rrr LBX R(1&2),

R3

M(R1&R2)[7:0]⇒ R3 - Load byte indexed

APPENDIX A. ANTARES32 INSTRUCTION SET 77

Bin./Hex code Mnem Exten Function Flags Description

00rrr011|B|0rrr CGE R1, R2 (R1 ≥ R2)⇒Cd=1 Cd Compare if greater-equal

00rrr011|B|1rrr LDX R(1&2),

R3

M(R1&R2)[15:0]⇒ R3 - Load word indexed

00rrr011|C|0rrr MPY R1, R2 (R1*R2)[15:00]⇒ R2 Ov Unsigned Multiply Short

00rrr011|C|1rrr MYL R(1&2),

R(3&4)

(R(1&2)*R(3&4))[31:0]⇒
R(3&4)

Ov Multiply long unsigned

00rrr011|D|0rrr MSY R1, R2 (R1*R2)[15:00]⇒ R2 Ov Signed Multiply

00rrr011|D|1rrr MSL R(1&2),

R(3&4)

(R(1&2)*R(3&4))[31:0]⇒
R(3&4)

Fl Multiply long signed

00rrr011|E|0rrr DIV R1, R2 R1/R2⇒ R2 Ov Division, not implemented

00rrr011|E|1rrr SBX R(1&2),

R3

R3[7:0]⇒ M(R1&R2)[7:0] - Store byte indexed

00rrr011|F|0rrr DVL R(1&2),

R(3&4)

R(1&2)/R(3&4)⇒ R(3&4) Ov Long Division, not imple-

mented

00rrr011|F|1rrr STX R(1&2),

R3

R3⇒ M(R1&R2)[15:0] - Store word indexed

Type E : Instructions with one register and an immediate 8 bit constant

01rrr000|NN LDI +/-

N7,R1

NN⇒R1[7..0],

Sign(NN)⇒R1[15..8]

If Pf : PF[15:8]&NN⇒R1,

0⇒Pf

Pf Load an eight bit constant with

sign extension, 16 bit constant

with prefix,

01rrr001|NN ADI N8, R1 R1+NN⇒R1

If Pf:PF[15:8]&NN+R1=R1

0⇒Pf

if R1=X or S:32 bit add

Cy,Ov,

Pf

Add pos 8-bit constant, add

16 bit constant with prefix

flag set, reset prefix flag,

For X or S-register: 32 bit add

01rrr010|NN SBI N8, R1 R1+NN⇒R1

If Pf:

PF[15:8]&NN+R1⇒ R1;

0⇒ Pf

if R1=X or S:32 bit add

Cy,Ov,

Pf

Sub pos 8-bit constant, sub

16 bit constant with pre-

fix flag set, reset prefix flag

For X or S register: 32 bit sub-

stract operation

APPENDIX A. ANTARES32 INSTRUCTION SET 78

Bin./Hex code Mnem Exten Function Flags Description

01rrr011|NN ANI N8, R1 R1[7:0] AND NN⇒ R1,

0⇒ R[15:8]

if Pf:

(PF[15:8]&NN) AND R1

⇒ R1

0⇒ Pf

Pf Bit wise AND with 8-bit con-

stant, bitwise and with 16 bit

constant with prefix flag set,

reset prefix flag

01rrr100|NN ORI N8, R1 R1[7:0] OR NN⇒ R1,

0⇒R1[15:8]

if Pf:

(PF[15:8]&NN) OR R1

⇒R1

0⇒Pf

Pf Bit wise OR with 8-bit con-

stant, bitwise OR with 16 bit

constant with prefix flag set,

reset prefix flag

01rrr101|NN SBS R1,

+/-N8

R1[7:0]⇒
M(S+/-NN0)[7:0]

if Pf:

R1[7:0]⇒
M(PF[31:8]&NN+S)

0⇒ Pf

Pf Store byte local, with prefix,

reset prefix flag

01rrr110|NN LDS +/-N8,

R1

M(S+/-NN0)⇒ R1

if Pf: M(PF[31:8]&NN+S)

⇒R1,

0⇒Pf

Pf Load word local to R1, with

prefix, reset prefix flag

01rrr111|NN STS R1, +/-

N8

R1⇒ M(S+/-NN0)

if Pf: R1⇒
M(PF[31:8]&NN+S)

0⇒Pf

Pf Store R1 word to local, with

prefix, reset prefix flag

10rrr000|NN LBA N8,R1 M(NN0) [7:0] ⇒ R1[7:0]

if Pf: M[7:0](PF[31:8]&NN)

⇒R1[7:0],

0⇒ Pf

Pf Load byte absolute

APPENDIX A. ANTARES32 INSTRUCTION SET 79

Bin./Hex code Mnem Exten Function Flags Description

10rrr001|NN LDA N8,R1 M(NN0)⇒R1

if Pf: M(PF[31:8]&NN)

⇒R1,

0⇒ Pf

Pf Load word absolute

10rrr010|NN STA R1,N8 R1⇒M(NN0)

if Pf:

R1⇒ M(PF[31:8]&NN),

0⇒ Pf

Pf Store word absolute

10rrr011|NN SBA R1, N8 R1[7:0]⇒M[7:0](NN0)

if Pf: R1[7:0]⇒
M[7:0](PF[31:8]&NN),

0⇒ Pf

Pf Store byte absolute , with pre-

fix, reset prefix flag

10rrr100|NN LAL NN,

R(1&2)

M(NN0)⇒R(1&2)

if Pf: M(PF[31:8]&NN)⇒
R(1&2),

0⇒ Pf

Pf Load long absolute

10rrr101|NN STL R(1&2),

NN

R(1&2)⇒M(NN0)

If Pf: R(1&2)⇒
M(PF[31:8]&NN),

0⇒ Pf

Pf Store long absolute

10rrr110|NN LSL +/-N8,

R(1&2)

M(S+/-NN0)⇒R(1&2),

if Pf: M(PF[15:8]&NN+S)

⇒R(1&2),

0⇒ Pf

Pf Load long local

10rrr111|NN SSL R(1&2),

+/-N7

R(1&2)⇒M(S+/-NN0),

If Pf: R(1&2)⇒
M(PF[15:8]&NN+S),

0⇒ Pf

Pf Store long local

Type F: Instructions with long offset

APPENDIX A. ANTARES32 INSTRUCTION SET 80

Bin./Hex code Mnem Exten Function Flags Description

1100|NNN LEA N12 NNN0⇒X

If Pf: PF[31:8]+NN ⇒ X,

0⇒ Pf

Pf Load effective address abso-

lute, with prefix, prefix flag re-

set

1101|NNN JMP N12 If Cd: NNN0⇒ PC,

If Pf: PF[31:8]+NN ⇒PC,

0⇒ Pf

Pf, Cd Jump absolute conditional,

with prefix, prefix flag reset

1110|NNN JPR +/-N11 If Cd: NNN0 + PC⇒ PC,

If Pf: PF[31:8]+NN+PC

⇒PC,

0⇒ Pf

Pf, Cd Jump relative conditional, with

prefix, prefix flag reset

1111|NNN CAL +/-N11 S–4⇒ S

PC+NNN0⇒ PC,

PC⇒M(S),

if Pf:

PF[31:8]+NN+PC⇒ PC,

0⇒ Pf

Pf Decrement Stack, Subroutine

call relative, PC on stack, with

prefix, prefix flag reset

Table A.3: Instruction Set Definition

Appendix B

Operation Types and Cycles

Instruction Cycle Description of resources used

Operation type: CONTROL

HLT INF,IND,STP cycle INF→ address bus and data bus

DIS INF,IND,EXC0 cycle IND→ Instruction Decoder

ENI INF,IND,EXC0

RCF INF,IND,EXC0

SCF INF,IND,EXC0

CSE INF,IND,EXC0

COV INF,IND,EXC0

CCY INF,IND,EXC0

NOP INF,IND,EXC0

RST INF,IND,EXC0

LPR INF,IND,EXC0

LPH INF,IND,EXC0

LPL INF,IND,EXC0

Operation type: INDXS1

PSF INF,IND,EXC1,EXC2,DST0 cycle INF→ address bus and data bus

PSH INF,IND,EXC1,EXC2,DST0 cycle IND→ Instruction Decoder

cycle EXC1→ A bus, B bus and C bus

cycle EXC2→ A bus, B bus and C bus

cycle DST0→ address bus and data bus

APPENDIX B. OPERATION TYPES AND CYCLES 82

Instruction Cycle Description of resources used

Operation type: INDXF1

PPF INF,IND,EXC1,EXC2,EXC3,DFT0 cycle INF→ address bus and data bus

POP INF,IND,EXC1,EXC2,EXC3,DFT0 cycle IND→ Instruction Decoder

cycle EXC1→ A bus and C bus

cycle EXC2→ A bus, B bus and C bus

cycle EXC3→ B bus

cycle DFT0→ address bus and data bus

Operation type: INDXS2

SWI INF,IND,EXC1,EXC2,DST1,DST2,DFT1,DFT2 cycle INF→ address bus and data bus

CLA INF,IND,EXC1,EXC2,DST1,DST2,ADC1 cycle IND→ Instruction Decoder

CLX INF,IND,EXC1,EXC2,DST1,DST2,DFT1,DFT2 cycle EXC1→ A bus, B bus and C bus

PSL INF,IND,EXC1,EXC2,DST1,DST2 cycle EXC2→ A bus, B bus and C bus

CAL INF,IND,EXC1,EXC2,DST1,DST2,ADC1 cycle DST1→ address bus and data bus

cycle DST2→ address bus and data bus

cycle DFT1 & DFT2 → address bus and data

bus

cycle ADC1→ PC and immediate

Operation type: INDXF2

RET INF,IND,EXC1,EXC2,EXC3,DFT1,DFT2 cycle INF→ address bus and data bus

PPL INF,IND,EXC1,EXC2,EXC3,DFT1,DFT2 cycle IND→ Instruction Decoder

cycle EXC1→ A bus and C bus

cycle EXC2→ A bus, B bus and C bus

cycle EXC3→ B bus

cycle DFT1 & DFT2 → address bus and data

bus

Operation type: REGREG0

CLR INF,IND,EXC0 cycle INF→ address bus and data bus

INV INF,IND,EXC0 cycle IND→ Instruction Decoder

NEG INF,IND,EXC0 cycle EXC0→ A bus, C bus and ALU

INC INF,IND,EXC0

DEC INF,IND,EXC0

SAR INF,IND,EXC0

APPENDIX B. OPERATION TYPES AND CYCLES 83

Instruction Cycle Description of resources used

SAL INF,IND,EXC0

SLR INF,IND,EXC0

SLL INF,IND,EXC0

SRC INF,IND,EXC0

SLC INF,IND,EXC0

IVC INF,IND,EXC0

SWH INF,IND,EXC0

SWL INF,IND,EXC0

CPT INF,IND,EXC0

CPS INF,IND,EXC0

CZE INF,IND,EXC0

CBI INF,IND,EXC0

CMI INF,IND,EXC0

CIL INF,IND,EXC0

Operation type: REGREG1

CRL INF,IND,EXC1,EXC2 cycle INF→ address bus and data bus

IVL INF,IND,EXC1,EXC2 cycle IND→ Instruction Decoder

NGL INF,IND,EXC1,EXC2 cycle EXC1→ A bus, C bus and ALU

ICL INF,IND,EXC1,EXC2 cycle EXC2→ A bus, C bus and ALU

DCL INF,IND,EXC1,EXC2

ARL INF,IND,EXC1,EXC2

ALL INF,IND,EXC1,EXC2

LRL INF,IND,EXC1,EXC2

LLL INF,IND,EXC1,EXC2

CPL INF,IND,EXC1,EXC2

CZL INF,IND,EXC1,EXC2

CML INF,IND,EXC1,EXC2

Operation type: REGREG2

GFL INF,IND,EXC0 cycle INF→ address bus and data bus

SFL INF,IND,EXC0 cycle IND→ Instruction Decoder

ADD INF,IND,EXC0 cycle EXC0→ A bus, B bus, C bus and ALU

MOV INF,IND,EXC0

APPENDIX B. OPERATION TYPES AND CYCLES 84

Instruction Cycle Description of resources used

SUB INF,IND,EXC0

ANA INF,IND,EXC0

ORA INF,IND,EXC0

XRA INF,IND,EXC0

CEQ INF,IND,EXC0

CNE INF,IND,EXC0

CGT INF,IND,EXC0

CGE INF,IND,EXC0

LDI INF,IND,EXC0

ADI INF,IND,EXC0

SBI INF,IND,EXC0

ANI INF,IND,EXC0

ORI INF,IND,EXC0

Operation type: REGREG3

MVL INF,IND,EXC1,EXC2 cycle INF→ address bus and data bus

ADL INF,IND,EXC1,EXC2 cycle IND→ Instruction Decoder

ANL INF,IND,EXC1,EXC2 cycle EXC1→ A bus, B bus, C bus and ALU

SBL INF,IND,EXC1,EXC2 cycle EXC2→ A bus, B bus, C bus and ALU

ORL INF,IND,EXC1,EXC2

CGL INF,IND,EXC1,EXC2

CQL INF,IND,EXC1,EXC2

XRL INF,IND,EXC1,EXC2

CEL INF,IND,EXC1,EXC2

CNL INF,IND,EXC1,EXC2

LEA INF,IND,EXC1,EXC2

Operation type: LOAD0

LBA INF,IND,DFT0 cycle INF→ address bus and data bus

LDA INF,IND,DFT0 cycle IND→ Instruction Decoder

LAL INF,IND,DFT1,DFT2 cycle DFT0→ address bus, data bus and C bus

cycle DFT1 & DFT2 → address bus and data

bus and C bus

APPENDIX B. OPERATION TYPES AND CYCLES 85

Instruction Cycle Description of resources used

Operation type: LOAD1

LBX INF,IND,EXC1,EXC2,DFT0 cycle INF→ address bus and data bus

LDX INF,IND,EXC1,EXC2,DFT0 cycle IND→ Instruction Decoder

LDS INF,IND,EXC1,EXC2,ADC1,DFT0 cycle EXC1 & EXC2→ B bus

cycle ADC1→ address bus int and immediate

cycle DFT0 → address bus and data bus and C

bus

Operation type: LOAD2

JPX INF,IND,EXC1,EXC2,DFT1,DFT2 cycle INF→ address bus and data bus

LXL INF,IND,EXC1,EXC2,DFT1,DFT2 cycle IND→ Instruction Decoder

LSL INF,IND,EXC1,EXC2,ADC1,DFT1,DFT2 cycle EXC1 & EXC2→ B bus

cycle ADC1→ address bus int and immediate

cycle DFT1 & DFT2 → address bus and data

bus and C bus

Operation type: STORE0

STA INF,IND,DST0 cycle INF→ address bus and data bus

SBA INF,IND,DST0 cycle IND→ Instruction Decoder

STL INF,IND,DST1,DST2 cycle DST1 & DST2 → address bus and data

bus and A bus

Operation type: STORE1

SBX INF,IND,EXC1,EXC2,DST0 cycle INF→ address bus and data bus

STX INF,IND,EXC1,EXC2,DST0 cycle IND→ Instruction Decoder

SBS INF,IND,EXC1,EXC2,ADC1,DST0 cycle EXC1 & EXC2→ B bus

STS INF,IND,EXC1,EXC2,ADC1,DST0 cycle ADC1→ address bus int and immediate

cycle DST0 → address bus and data bus and A

bus

Operation type: STORE2

SXL INF,IND,EXC1,EXC2,DST1,DST2 cycle INF→ address bus and data bus

SSL INF,IND,EXC1,EXC2,DST1,DST2 cycle IND→ Instruction Decoder

cycle EXC1 & EXC2→ B bus

APPENDIX B. OPERATION TYPES AND CYCLES 86

Instruction Cycle Description of resources used

cycle DST1 & DST2 → address bus, data bus

and A bus

Operation type: JUMP

JMP INF,IND,ADC0 cycle INF→ address bus and data bus

JPR INF,IND,ADC0 cycle IND→ Instruction Decoder

cycle ADC0→ PC and immediate

Table B.1: Operation Types and Cycles

Appendix C

VHDL Codes

C.1 Finite State Machine

--

--

-- ANTARES 32 bit Project ---

-- . ---

-- Author: David Berner ---

-- CREATION: 14.06.2002 ---

-- MODULE: Control FSM ---

-- DESCRIPTION: Finite State Machine controlling the state ---

-- transitions for each instruction ---

-- . ---

-- Modified: 26.08.2002 ---

--

library ieee;

use ieee.std_logic_1164.all;

use work.std_logic_arith.all;

use work.antares_definitions.all;

entity control_fsm is

port(

op : in operation_type;

APPENDIX C. VHDL CODES 88

instr_dec : in instr_type;

current_st : in cycle_type;

alu : in std_ulogic;

mem : in std_ulogic;

enable : in std_ulogic;

ready : out std_ulogic;

next_st : out cycle_type

);

end control_fsm;

architecture control_fsm_behave of control_fsm is

signal adc : std_ulogic;

function ind_to_exc1(op : operation_type) return boolean is

-- condition for transition from IND to EXC1 cycle

variable tmp : boolean;

begin

tmp := ((op = LOAD1) or

(op = STORE1) or

(op = LOAD2) or

(op = STORE2) or

(op = INDXS1) or

(op = INDXS2) or

(op = INDXF1) or

(op = INDXF2) or

(op = REGREG1) or

(op = REGREG3));

return (tmp);

end ind_to_exc1;

function ind_to_exc0(op : operation_type) return boolean is

-- condition for transition from IND to EXC0 cycle

begin

return ((op = REGREG0) or (op = REGREG2) or (op = CONTROL));

APPENDIX C. VHDL CODES 89

end ind_to_exc0;

function ind_to_adc0(op : operation_type) return boolean is

-- condition for transition from IND to ADC0 cycle

begin

return ((op = JUMP) or (op = LOAD0) or (op = STORE0));

end ind_to_adc0;

signal next_state : cycle_type;

begin

next_st <= next_state;

nextstate : process (

op,

alu,

current_st,

instr_dec,

mem,

enable

)

begin

if enable = ’0’ then

-- when the enable goes to ’0’ we set ready to ’0’

-- when enable goes to one, ready will be set to ’1’

-- only after calculation of the new result.

ready <= ’0’;

else

next_state <= current_st;

-- this is the FSM-logic generated by FPGA-advantage

-- Combined Actions

APPENDIX C. VHDL CODES 90

-- wait for 5 ns;

case current_st is

when INF =>

next_state <= IND;

when IND =>

if (((ind_to_exc0(OP) or ind_to_exc1(OP)) and

(alu = ’1’)) or

(OP = JUMP and (adc = ’1’))) then

next_state <= W1;

elsif ((instr_dec = STL) and (mem = ’1’)) then

next_state <= W2;

elsif (((instr_dec = STA) or (instr_dec = SBA) or

(OP = LOAD0)) and (mem = ’1’)) then

next_state <= W4;

elsif (ind_to_exc0(OP)) then

next_state <= EXC0;

elsif (ind_to_exc1(OP)) then

next_state <= EXC1;

elsif (OP = JUMP) then

next_state <= ADC0;

elsif (instr_dec = HLT) then

next_state <= STP;

elsif (instr_dec = LBA or instr_dec = LDA) then

next_state <= DFT0;

elsif (instr_dec = LAL) then

next_state <= DFT1;

elsif (instr_dec = STA or instr_dec = SBA) then

next_state <= DST0;

elsif (instr_dec = STL) then

next_state <= DST1;

else

next_state <= IND;

end if;

when EXC0 =>

if (mem = ’1’) then

APPENDIX C. VHDL CODES 91

next_state <= W5;

else

next_state <= INF;

end if;

when EXC1 =>

next_state <= EXC2;

when EXC2 =>

if (mem = ’1’ and (OP = INDXS2 or OP = STORE2)) then

next_state <= W2;

elsif (OP = INDXS2 or OP = STORE2) then

next_state <= DST1;

elsif ((instr_dec = LDS or instr_dec = LSL or

instr_dec = STS or instr_dec = SBS)

and adc = ’1’) then

next_state <= W3;

elsif (instr_dec = LDS or instr_dec = LSL or

instr_dec = STS or instr_dec = SBS) then

next_state <= ADC1;

elsif (OP = INDXF1 or (op = INDXF2)) then

next_state <= EXC3;

elsif ((OP = INDXS1 or OP = STORE1 or OP = LOAD1 or

OP = INDXF2 or OP = LOAD2) and (mem = ’1’)) then

next_state <= W4;

elsif (OP = INDXS1 or OP = STORE1) then

next_state <= DST0;

elsif (OP = LOAD1) then

next_state <= DFT0;

elsif (OP = INDXF2 or OP = LOAD2) then

next_state <= DFT1;

elsif (mem = ’1’) then

next_state <= W5;

else

next_state <= INF;

end if;

when DST0 =>

APPENDIX C. VHDL CODES 92

if (mem = ’1’) then

next_state <= W5;

else

next_state <= INF;

end if;

when DST1 =>

next_state <= DST2;

when DST2 =>

if (((instr_dec = CLX) or (instr_dec = SWI)) and

(mem = ’1’)) then

next_state <= DFT1;

elsif (((instr_dec = CLA or instr_dec = CAL) and

adc = ’1’)) then

next_state <= W3;

elsif ((instr_dec = CLA) or (instr_dec = CAL)) then

next_state <= ADC1;

elsif (((instr_dec = CLX) or (instr_dec = SWI)) and

(mem = ’1’)) then

next_state <= W4;

elsif (mem = ’1’) then

next_state <= W5;

else

next_state <= INF;

end if;

when DFT1 =>

next_state <= DFT2;

when DFT0 =>

if (mem = ’1’) then

next_state <= W5;

else

next_state <= INF;

end if;

when DFT2 =>

if (mem = ’1’) then

next_state <= W5;

APPENDIX C. VHDL CODES 93

else

next_state <= INF;

end if;

when ADC1 =>

if ((OP = INDXF2 or OP = LOAD2 or OP = STORE1 or

OP = LOAD1 or OP = INDXF1) and mem = ’1’) then

next_state <= W4;

elsif (OP = STORE1) then

next_state <= DST0;

elsif (OP = LOAD2) then

next_state <= DFT1;

elsif (OP = LOAD1) then

next_state <= DFT0;

elsif (mem = ’1’) then

next_state <= W5;

else

next_state <= INF;

end if;

when ADC0 =>

if (mem = ’1’) then

next_state <= W5;

else

next_state <= INF;

end if;

when STP =>

next_state <= STP;

when W1 =>

if (((ind_to_exc0(OP) or ind_to_exc1(OP)) and

(alu = ’1’)) or

(OP = JUMP and (adc = ’1’))) then

next_state <= W1;

elsif (ind_to_exc1(OP)) then

next_state <= EXC1;

elsif (ind_to_exc0(OP)) then

next_state <= EXC0;

APPENDIX C. VHDL CODES 94

elsif (OP = JUMP) then

next_state <= ADC0;

else

next_state <= W1;

end if;

when W5 =>

if (mem = ’1’) then

next_state <= W5;

else

next_state <= INF;

end if;

when W2 =>

if (mem = ’1’) then

next_state <= W2;

elsif (mem = ’0’) then

next_state <= DST1;

else

next_state <= W2;

end if;

when W4 =>

if (mem = ’1’) then

next_state <= W4;

elsif ((mem = ’0’) and (OP = STORE1 or OP = INDXS1 or instr_dec = STA

or instr_dec = SBA) then

next_state <= DST0;

elsif ((mem = ’0’) and (OP = INDXF2 or OP = LOAD2 or

instr_dec = LAL or instr_dec = STL) then

next_state <= DFT1;

elsif ((mem = ’0’) and (OP = LOAD1 or OP = INDXF1 or

instr_dec = LBA or instr_dec = LDA) then

next_state <= DFT0;

else

next_state <= W4;

end if;

when W3 =>

APPENDIX C. VHDL CODES 95

if (adc = ’1’) then

next_state <= W3;

else

next_state <= ADC1;

end if;

when EXC3 =>

next_state <= DFT0;

when others =>

next_state <= W5;

end case;

ready <= ’1’after 2 ns;

-- this tells the pipelined control that the FSM has finished

end if;

end process nextstate;

end control_fsm_behave;

C.2 Arbiter

--

--

-- ANTARES 32 bit Project ---

-- . ---

-- Author: David Berner ---

-- CREATION: 15.06.2002 ---

-- MODULE: Arbiter with multimode FSM control ---

-- DESCRIPTION: Control for pipelined operation ---

-- . ---

-- Modified: 26.08.2002 ---

--

--

library ieee;

use ieee.std_logic_1164.all;

use work.std_logic_arith.all;

APPENDIX C. VHDL CODES 96

use work.antares_definitions.all;

entity control_pipe is

port(

clock : in std_ulogic;

reset : in std_ulogic;

op : in operation_type;

ins : in instr_type;

cyc_adr : out cycle_type;

cyc_exc : out cycle_type;

en_adr : out std_ulogic;

en_exc : out std_ulogic;

en_inf : out std_ulogic;

read : out std_ulogic;

write : out std_ulogic

);

end control_pipe;

architecture control_pipe_behave of control_pipe is

component control_fsm

port(

op : in operation_type;

instr_dec : in instr_type;

current_st : in cycle_type;

alu : in std_ulogic;

mem : in std_ulogic;

enable : in std_ulogic;

ready : out std_ulogic;

next_st : out cycle_type

);

end component;

signal cycle1 : cycle_type := W5;

signal cycle2 : cycle_type := W5;

APPENDIX C. VHDL CODES 97

signal cycle3 : cycle_type := W5;

signal cycle1_int : cycle_type := W5;

signal cycle2_int : cycle_type := W5;

signal cycle3_int : cycle_type := W5;

signal next_cycle1 : cycle_type;

signal next_cycle2 : cycle_type;

signal next_cycle3 : cycle_type;

signal op1 : operation_type := CONTROL;

signal op2 : operation_type := CONTROL;

signal op3 : operation_type := CONTROL;

signal ins1 : instr_type := NOP;

signal ins2 : instr_type := NOP;

signal ins3 : instr_type := NOP;

signal alu_use : std_ulogic := ’0’;

signal mem_use : std_ulogic := ’0’;

signal inf_use : std_ulogic := ’0’;

signal done1 : std_ulogic := ’0’;

signal done2 : std_ulogic := ’0’;

signal done3 : std_ulogic := ’0’;

signal en1 : std_ulogic := ’1’;

signal en2 : std_ulogic := ’1’;

signal en3 : std_ulogic := ’1’;

signal ready : std_ulogic := ’0’;

signal ready1 : std_ulogic := ’0’;

signal ready2 : std_ulogic := ’0’;

signal ready3 : std_ulogic := ’0’;

function uses_alu(state : cycle_type) return boolean is

-- checks if a cycle uses the ALU

APPENDIX C. VHDL CODES 98

begin

return ((state = EXC0) or (state = EXC1) or (state = EXC2)or

(state = EXC3));

end uses_alu;

function uses_mem(state : cycle_type) return boolean is

-- checks if a cycle uses the addressing

begin

return ((state = DST0) or (state = DST1) or (state = DST2)or

(state = DFT0) or (state = DFT1)or (state = dft2) or

(state = adc0)or (state = adc1)or (state = inf));

end uses_mem;

function mem_read(state : cycle_type) return boolean is

-- checks if a cycle reads from memory

begin

return ((state = DFT0)or (state = DFT1)or (state = dft2)or

(state = inf));

end mem_read;

function mem_write(state : cycle_type) return boolean is

-- checks if a cycle writes to memory

begin

return ((state = DST0)or (state = DST1)or (state = DST2));

end mem_write;

begin

-- instantiation of threee FSM’s

control_fsm1 : control_fsm

port map(op => op1,

instr_dec => ins1,

current_st => cycle1,

alu => alu_use,

mem => mem_use,

APPENDIX C. VHDL CODES 99

enable => en1,

ready => ready1,

next_st => next_cycle1);

control_fsm2 : control_fsm

port map(op => op2,

instr_dec => ins2,

current_st => cycle2,

alu => alu_use,

mem => mem_use,

enable => en2,

ready => ready2,

next_st => next_cycle2);

control_fsm3 : control_fsm

port map(op => op3,

instr_dec => ins3,

current_st => cycle3,

alu => alu_use,

mem => mem_use,

enable => en3,

ready => ready3,

next_st => next_cycle3);

set_io : process(cycle1, cycle2, cycle3)

begin

-- it is determined where the input signals "op" and "ins" go.

-- they go to the FSM which is currently in the "IND" state

if (cycle1 = IND) then

op1 <= op;

ins1 <= ins;

elsif (cycle2 = IND) then

op2 <= op;

ins2 <= ins;

elsif (cycle3 = IND) then

APPENDIX C. VHDL CODES 100

op3 <= op;

ins3 <= ins;

end if;

-- here we set the appropriate output signals

-- for execution ...

if uses_alu(cycle1) then

cyc_exc <= cycle1;

en_exc <= ’1’;

elsif uses_alu(cycle2) then

cyc_exc <= cycle2;

en_exc <= ’1’;

elsif uses_alu(cycle3) then

cyc_exc <= cycle3;

en_exc <= ’1’;

else

en_exc <= ’0’;

end if;

-- ... and addressing

if uses_mem(cycle1)or cycle1 = inf then

cyc_adr <= cycle1;

en_adr <= ’1’;

elsif uses_mem(cycle2)or cycle1 = inf then

cyc_adr <= cycle2;

en_adr <= ’1’;

elsif uses_mem(cycle3)or cycle1 = inf then

cyc_adr <= cycle3;

en_adr <= ’1’;

else

en_adr <= ’0’;

end if;

-- tell the memory to read or write

if (mem_read(cycle1) or mem_read(cycle2) or mem_read(cycle3)) then

read <= ’1’;

APPENDIX C. VHDL CODES 101

write <= ’0’;

elsif (mem_write(cycle1_int) or mem_write(cycle2)

or mem_write(cycle3)) then

write <= ’1’;

read <= ’0’;

else

read <= ’0’;

write <= ’0’;

end if;

-- enable the Instruction register

if (cycle1 = INF) then

en_inf <= ’1’;

elsif (cycle2 = INF) then

en_inf <= ’1’;

elsif (cycle3 = INF) then

en_inf <= ’1’;

else

en_inf <= ’0’;

end if;

end process set_io;

nextstate : process(clock, reset, ready1, ready2, ready3)

begin

if rising_edge(clock) then

-- going to the next cycle

cycle1 <= cycle1_int;

cycle2 <= cycle2_int;

cycle3 <= cycle3_int;

en1 <= ’1’;

en2 <= ’0’;

en3 <= ’0’;

done1 <= ’0’;

APPENDIX C. VHDL CODES 102

done2 <= ’0’;

done3 <= ’0’;

alu_use <= ’0’;

mem_use <= ’0’;

ready <= ’0’;

end if;

if reset = ’0’ then

-- reset all FSMs to waitstate 5

cycle1 <= W5;

cycle2 <= W5;

cycle3 <= W5;

end if;

-- now the next cycle of the FSMs are determined starting with FSM1

-- in a first run we give priority to DFT2, DST2 and EXC2

if ready1 = ’1’ then

en1 <= ’0’;

if ready = ’0’ then

if (((next_cycle1 = EXC2)or(next_cycle1 = EXC3)and

(alu_use = ’0’)))then

cycle1_int <= next_cycle1;

done1 <= ’1’;

alu_use <= ’1’;

elsif (((next_cycle1 = DFT2)or(next_cycle1 = DST2))and

(mem_use = ’0’)) then

cycle1_int <= next_cycle1;

mem_use <= ’1’;

done1 <= ’1’;

elsif ((op1 = JUMP) and (next_cycle1 = ADC0)) then

mem_use <= ’1’;

cycle1_int <= next_cycle1;

cycle2_int <= W5;

cycle3_int <= W5;

APPENDIX C. VHDL CODES 103

ready <= ’1’;

en1 <= ’1’;

done1 <= ’1’;

done2 <= ’1’;

done3 <= ’1’;

end if;

elsif (ready = ’1’)and (done1 = ’0’) then

cycle1_int <= next_cycle1;

if (uses_alu(next_cycle1)) then

alu_use <= ’1’;

elsif (uses_mem(next_cycle1) or (next_cycle1 = INF)) then

mem_use <= ’1’;

end if;

end if;

ready <= ’1’;

en1 <= ’1’;

elsif ready2 = ’1’ then

en2 <= ’0’;

if ready = ’0’ then

if ((next_cycle2 = EXC2) and (alu_use = ’0’)) then

cycle2_int <= next_cycle2;

alu_use <= ’1’;

done2 <= ’1’;

elsif (((next_cycle2 = DFT2) or (next_cycle2 = DST2))

and (mem_use = ’0’))then

cycle2_int <= next_cycle2;

mem_use <= ’1’;

done2 <= ’1’;

elsif ((op2 = JUMP) and (next_cycle2 = ADC0)) then

mem_use <= ’1’;

cycle2_int <= next_cycle2;

cycle3_int <= W5;

cycle1_int <= W5;

done1 <= ’1’;

APPENDIX C. VHDL CODES 104

done2 <= ’1’;

done3 <= ’1’;

end if;

elsif (ready = ’1’)and done2 = ’0’ then

cycle2_int <= next_cycle2;

if (uses_alu(next_cycle2)) then

alu_use <= ’1’;

elsif (uses_mem(next_cycle2) or (next_cycle2 = INF)) then

mem_use <= ’1’;

end if;

end if;

en3 <= ’1’;

elsif (ready3 = ’1’)then

en3 <= ’0’;

if ready = ’0’ then

if ((next_cycle3 = EXC2) and (alu_use = ’0’)) then

cycle3_int <= next_cycle3;

alu_use <= ’1’;

done3 <= ’1’;

elsif (((next_cycle3 = DFT2) or (next_cycle3 = DST2))

and (mem_use = ’0’)) then

cycle3_int <= next_cycle3;

mem_use <= ’1’;

done3 <= ’1’;

elsif ((op3 = JUMP)and (next_cycle3 = ADC0)) then

mem_use <= ’1’;

cycle3_int <=next_cycle3;

cycle1_int<=W5;

cycle2_int<=W5;

done1<=’1’;

done2<=’1’;

done3<=’1’;

end if;

APPENDIX C. VHDL CODES 105

ready<=’1’; -- start the second run

en1<=’1’;

elsif (ready = ’1’) and done3=’0’ and (en1=’0’) then

cycle3_int <= next_cycle3;

if (uses_alu(next_cycle3)) then

alu_use <= ’1’;

elsif (uses_mem(next_cycle3) or (next_cycle3 = INF)) then

mem_use <= ’1’;

end if;

end if;

end if;

end process nextstate;

end control_pipe_behave;

C.3 Control Unit

--

--

-- ANTARES 32 bit Project ---

-- ---

-- Author: David Berner ---

-- CREATION: 15.06.2002 ---

-- MODULE: Control unit ---

-- DESCRIPTION: Control unit top sheet ---

-- ---

-- Modified: 24.07.2002 ---

--

--

library ieee;

use ieee.std_logic_1164.all;

use work.std_logic_arith.all;

APPENDIX C. VHDL CODES 106

use work.antares_definitions.all;

entity control_unit is

port(

clock : in std_ulogic;

reset : in std_ulogic;

data_bus : in signed (15 downto 0);

cd_IN : in std_ulogic; --condition flag in

se_in : in std_ulogic; --sense flag

intr : in std_ulogic;

cy_in : in std_ulogic; --carry in

cy_out : out std_ulogic; --carry out

cd_out : out std_ulogic; --condition flag out

ins_exc_out : out instr_type;

cyc_exc_out : out cycle_type;

op_exc_out : out operation_type;

immediate_exc : out signed (31 downto 0);

ins_adr_out : out instr_type;

cyc_adr_out : out cycle_type;

op_adr_out : out operation_type;

immediate_adr : out signed (31 downto 0);

reg_tgt_out : out std_ulogic_vector (2 downto 0);

reg_src1_out : out std_ulogic_vector (2 downto 0);

reg_src2_out : out std_ulogic_vector (2 downto 0);

PF_OUT : out std_ulogic;

read : out std_ulogic;

IO : out std_ulogic;

intr_ack : out std_ulogic;

write : out std_ulogic

);

end control_unit;

architecture control_unit_behave of control_unit is

component control_pipe

APPENDIX C. VHDL CODES 107

port(

clock : in std_ulogic;

reset : in std_ulogic;

op : in operation_type;

ins : in instr_type;

cyc_adr : out cycle_type;

cyc_exc : out cycle_type;

en_exc : out std_ulogic;

en_adr : out std_ulogic;

en_inf : out std_ulogic;

read : out std_ulogic;

write : out std_ulogic

);

end component;

signal Instr_Reg : std_ulogic_vector(15 downto 0);

signal cycle_exc, cycle_adr : cycle_type;

signal cyc_exc_int, cyc_adr_int : cycle_type;

signal ins_int, instr_exc, instr_adr : instr_type;

signal reg_tgt, reg_src1, reg_src2 : std_ulogic_vector(2 downto 0);

signal reg_src1_adr, reg_src2_adr : std_ulogic_vector(2 downto 0);

signal reg_src1_int, reg_src2_int : std_ulogic_vector(2 downto 0);

signal reg_tgt_int, reg_tgt_adr : std_ulogic_vector(2 downto 0);

signal immediate_int : std_ulogic_vector(31 downto 0);

signal op_int, operat_exc, operat_adr : operation_type;

signal Default_src1_reg : std_ulogic_vector(2 downto 0)

:= "000";

signal Default_src2_reg : std_ulogic_vector(2 downto 0)

:= "001";

signal Default_tgt_reg : std_ulogic_vector(2 downto 0)

:= "000";

signal flag_reg : std_ulogic_vector(7 downto 0);

signal PF_int, IE_int, Cd_int : std_ulogic;

signal ov_int, se_int, CY_int : std_ulogic;

signal ip_int : std_ulogic;

APPENDIX C. VHDL CODES 108

signal pd_int : std_ulogic;

signal read_int, write_int : std_ulogic;

signal en_exc : std_ulogic;

signal en_adr : std_ulogic;

signal en_inf : std_ulogic;

signal pc_mode : pc_mode_type;

signal adr_mode : adr_mode_type;

-- signal mem : std_ulogic := ’0’;

-- signal adc : std_ulogic := ’0’;

-- signal alu : std_ulogic := ’0’;

function increment (incre_reg : std_ulogic_vector(2 downto 0))

return std_ulogic_vector is

variable func_output : std_ulogic_vector(2 downto 0);

begin

case incre_Reg is

when "000" =>

func_output := "001";

when "001" =>

func_output := "010";

when "010" =>

func_output := "011";

when "011" =>

func_output := "100";

when "100" =>

func_output := "101";

when "101" =>

func_output := "101";

when "110" =>

func_output := "110";

when "111" =>

func_output := "111";

when others =>

func_output := "000";

APPENDIX C. VHDL CODES 109

end case;

return(func_output);

end increment;

begin

control_pipe1 : control_pipe

port map(

clock => clock,

reset => reset,

op => op_int,

ins => ins_int,

cyc_adr => cyc_adr_int,

cyc_exc => cyc_exc_int,

en_exc => en_exc,

en_adr => en_adr,

en_inf => en_inf,

read => read_int,

write => write_int

);

-------------------- INSTRUCTION DECODE ------------------------------

instr_dec_process : process(instr_reg)

begin

---------------------------Type A Instructions -----------------------

if (Instr_Reg(15 downto 8) = "00000000") then

reg_src1_int <= Default_src1_reg;

reg_src2_int <= Default_src2_reg;

reg_tgt_int <= Default_tgt_reg;

op_int <= CONTROL;

case Instr_Reg(7 downto 0) is

when "00000000" =>

ins_int <= HLT;

APPENDIX C. VHDL CODES 110

pd_int <= ’1’;

when "00000001" =>

ins_int <= DIS;

ie_int <= ’0’;

when "00000010" =>

ins_int <= ENI;

ie_int <= ’1’;

when "00000110" =>

ins_int <= RCF;

cd_int <= ’0’;

when "00000111" =>

ins_int <= SCF;

cd_int <= ’1’;

when "00001000" =>

ins_int <= CSE;

cd_int <= flag_reg(6);

when "00001001" =>

ins_int <= COV;

cd_int <= flag_reg(1);

when "00001010" =>

ins_int <= CCY;

cd_int <= flag_reg(0);

when "00001100" =>

ins_int <= PSF;

op_int <= INDXS1;

reg_src1_int <= "110";

reg_src2_int <= "110";

APPENDIX C. VHDL CODES 111

reg_tgt_int <= "110";

when "00001101" =>

ins_int <= PPF;

op_int <= INDXF1;

reg_src1_int <= "110";

reg_src2_int <= "110";

reg_tgt_int <= "110";

when "00001110" =>

ins_int <= NOP;

when "00001111" =>

ins_int <= RST;

immediate_int <= "00000000000000000000000000000000";

PF_int <= ’0’;

IE_int <= ’0’;

Cd_int <= ’0’;

CY_int <= ’0’;

se_int <= ’0’;

ov_int <= ’0’;

ip_int <= ’0’;

pd_int <= ’0’;

when others =>

ins_int <= NOP;

end case;

end if;

if Instr_Reg(15 downto 14) = "00" then

----------------------------Type B instructions ----------------------

APPENDIX C. VHDL CODES 112

if Instr_Reg(10 downto 8) = "001" then

reg_src1_int <= "110";

reg_src2_int <= "110";

reg_tgt_int <= "110";

case Instr_Reg(13 downto 11) is

when "000" =>

ins_int <= PIN;

op_int <= LOAD1;

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

when "001" =>

ins_int <= POT;

op_int <= STORE1;

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

when "010" =>

ins_int <= SWI;

op_int <= INDXS2;

immediate_int <= "00000000000000000000000" &

instr_reg(7 downto 0) & ’0’;

pf_int <= ’0’;

when "011" =>

ins_int <= LPR;

op_int <= CONTROL;

pf_int <= ’1’;

immediate_int <= "0000000000000000" &instr_reg(7 downto 0)&

"00000000";

when "100" =>

APPENDIX C. VHDL CODES 113

ins_int <= CLA;

op_int <= INDXS2;

if flag_reg(3) = ’1’ then

immediate_int <= immediate_int or

"000000000000000000000000"

& instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "00000000000000000000000" &

instr_reg(7 downto 0) & ’0’;

end if;

when "101" =>

ins_int <= RET;

op_int <= INDXF2;

if flag_reg(3) = ’1’ then

immediate_int <= "000000000000000000000000" or

immediate_int & instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "110" =>

ins_int <= LPH;

immediate_int <= instr_reg(7 downto 0) &

"000000000000000000000000";

pf_int <= ’1’;

op_int <= CONTROL;

when "111" =>

ins_int <= LPL;

op_int <= CONTROL;

immediate_int <= "00000000" & instr_reg(7 downto 0) &

APPENDIX C. VHDL CODES 114

"0000000000000000";

pf_int <= ’1’;

when others =>

ins_int <= NOP;

op_int <= CONTROL;

end case;

end if;

--------------------------Type C instructions ------------------------

if instr_reg(10 downto 8) = "010" then

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= instr_reg(13 downto 11);

reg_tgt_int <= instr_reg(13 downto 11);

op_int <= REGREG0;

case instr_Reg(7 downto 0) is

when "00000000" =>

ins_int <= CLR;

when "00000001" =>

ins_int <= INV;

when "00000010" =>

ins_int <= NEG;

when "00000011" =>

ins_int <= INC;

when "00000100" =>

ins_int <= DEC;

APPENDIX C. VHDL CODES 115

when "00000101" =>

ins_int <= SAR;

when "00000110" =>

ins_int <= SAL;

when "00000111" =>

ins_int <= SLR;

when "00001000" =>

ins_int <= SL_L;

when "00001001" =>

ins_int <= SRC;

when "00001010" =>

ins_int <= SLC;

when "00001011" =>

ins_int <= IVC;

when "00001100" =>

ins_int <= SWH;

when "00001101" =>

ins_int <= SWL;

when "00001110" =>

ins_int <= GFL;

when "00001111" =>

ins_int <= SFL;

when "00010000" =>

ins_int <= CPT;

APPENDIX C. VHDL CODES 116

when "00010001" =>

ins_int <= CPS;

when "00010010" =>

ins_int <= CZE;

when "00010011" =>

ins_int <= CBI;

when "00010100" =>

ins_int <= CMI;

when "00010101" =>

ins_int <= CIL;

op_int <= REGREG0;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= instr_reg(13 downto 11);

reg_tgt_int <= increment(instr_reg(13 downto 11)); --+’1’

when "00100011" =>

ins_int <= JPX;

op_int <= LOAD2;

when "00100100" =>

ins_int <= CLX;

op_int <= INDXS2;

reg_src2_int <= "110";

reg_tgt_int <= "110";

when "00100101" =>

ins_int <= PSH;

op_int <= INDXS1;

reg_src2_int <= "110";

reg_tgt_int <= "110";

APPENDIX C. VHDL CODES 117

when "00100110" =>

ins_int <= POP;

op_int <= INDXF1;

reg_src2_int <= "110";

reg_tgt_int <= "110";

when "00100111" =>

ins_int <= PSL;

op_int <= INDXS2;

reg_src2_int <= "110";

reg_tgt_int <= "110";

when "00101000" =>

ins_int <= PPL;

op_int <= INDXF2;

reg_src2_int <= "110";

reg_tgt_int <= "110";

when "00110000" =>

ins_int <= CRL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11)); --+’1’

reg_tgt_int <= instr_reg(13 downto 11);

when "00110001" =>

ins_int <= IVL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11)); ;

reg_tgt_int <= instr_reg(13 downto 11);

when "00110010" =>

APPENDIX C. VHDL CODES 118

ins_int <= NGL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11)); ;

reg_tgt_int <= instr_reg(13 downto 11);

when "00110011" =>

ins_int <= ICL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00110100" =>

ins_int <= DCL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00110101" =>

ins_int <= ARL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00110110" =>

ins_int <= AL_L;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00110111" =>

APPENDIX C. VHDL CODES 119

ins_int <= LRL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00111000" =>

ins_int <= LLL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00111001" =>

ins_int <= CPL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00111010" =>

ins_int <= CZL;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when "00111011" =>

ins_int <= CML;

op_int <= REGREG1;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= increment(instr_reg(13 downto 11));

reg_tgt_int <= instr_reg(13 downto 11);

when others =>

APPENDIX C. VHDL CODES 120

ins_int <= NOP;

op_int <= CONTROL;

reg_src1_int <= Default_src1_reg;

reg_src2_int <= Default_src2_reg;

reg_tgt_int <= Default_tgt_reg;

end case;

end if;

-----------------------------Type D instructions ---------------------

if Instr_reg(10 downto 8) = "011" then

op_int <= REGREG2;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= instr_reg(2 downto 0);

reg_tgt_int <= instr_reg(2 downto 0);

case Instr_Reg(7 downto 3) is

when "00000" =>

ins_int <= MOV;

when "00001" =>

ins_int <= MVL;

op_int <= REGREG3;

when "00010" =>

ins_int <= ADD;

op_int <= REGREG2;

when "00011" =>

ins_int <= ADL;

op_int <= REGREG3;

APPENDIX C. VHDL CODES 121

when "00100" =>

ins_int <= LXL;

op_int <= LOAD2;

reg_src1_int <= instr_reg(2 downto 0);

reg_src2_int <= instr_reg(13 downto 11);

reg_tgt_int <= instr_reg(2 downto 0);

when "00101" =>

ins_int <= ANL;

op_int <= REGREG3;

when "00110" =>

ins_int <= SUB;

op_int <= REGREG2;

when "00111" =>

ins_int <= SBL;

op_int <= REGREG3;

when "01000" =>

ins_int <= SXL;

op_int <= STORE2;

reg_src1_int <= instr_reg(2 downto 0);

reg_src2_int <= instr_reg(13 downto 11);

reg_tgt_int <= instr_reg(2 downto 0);

when "01001" =>

ins_int <= ORL;

op_int <= REGREG3;

when "01010" =>

ins_int <= ANA;

op_int <= REGREG2;

reg_src1_int <= instr_reg(2 downto 0);

reg_src2_int <= instr_reg(13 downto 11);

APPENDIX C. VHDL CODES 122

reg_tgt_int <= instr_reg(2 downto 0);

when "01011" =>

ins_int <= CGL;

op_int <= REGREG3;

when "01100" =>

ins_int <= ORA;

op_int <= REGREG2;

when "01101" =>

ins_int <= CQL;

op_int <= REGREG3;

when "01110" =>

ins_int <= XRA;

op_int <= REGREG2;

when "01111" =>

ins_int <= XRL;

op_int <= REGREG3;

when "10000" =>

ins_int <= CEQ;

op_int <= REGREG2;

when "10001" =>

ins_int <= CEL;

op_int <= REGREG3;

when "10010" =>

ins_int <= CNE;

op_int <= REGREG2;

when "10011" =>

APPENDIX C. VHDL CODES 123

ins_int <= CNL;

op_int <= REGREG3;

when "10100" =>

ins_int <= CGT;

op_int <= REGREG2;

when "10101" =>

ins_int <= LBX;

op_int <= LOAD1;

reg_src1_int <= instr_reg(2 downto 0);

reg_src2_int <= instr_reg(13 downto 11);

reg_tgt_int <= instr_reg(2 downto 0);

when "10110" =>

ins_int <= CGE;

op_int <= REGREG2;

when "10111" =>

ins_int <= LDX;

op_int <= LOAD1;

reg_src1_int <= instr_reg(2 downto 0);

reg_src2_int <= instr_reg(13 downto 11);

reg_tgt_int <= instr_reg(2 downto 0);

when "11000" =>

ins_int <= MPY; op_int <= REGREG1;

when "11001" =>

ins_int <= MYL; op_int <= REGREG1;

when "11010" =>

ins_int <= MSY; op_int <= REGREG1;

when "11011" =>

ins_int <= MSL; op_int <= REGREG1;

when "11101" =>

APPENDIX C. VHDL CODES 124

ins_int <= SBX;

op_int <= STORE1;

when "11111" =>

ins_int <= STX;

op_int <= STORE1;

when others =>

ins_int <= NOP;

op_int <= CONTROL;

reg_src1_int <= Default_src1_reg;

reg_src2_int <= Default_src2_reg;

reg_tgt_int <= Default_tgt_reg;

end case;

end if; -- if type D

end if; -- if type "00"

---------------------------Type E1 instructions ----------------------

if Instr_Reg(15 downto 14) = "01" then

op_int <= REGREG2;

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= instr_reg(13 downto 11);

reg_tgt_int <= instr_reg(13 downto 11);

case Instr_Reg(10 downto 8) is

when "000" =>

ins_int <= LDI;

if flag_reg(3) = ’1’ then

immediate_int <= "0000000000000000" &

immediate_int(15 downto 8) &

instr_reg(7 downto 0);

APPENDIX C. VHDL CODES 125

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "001" =>

ins_int <= ADI;

if flag_reg(3) = ’1’ then

immediate_int <= "0000000000000000" &

immediate_int(15 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "010" =>

ins_int <= SBI;

if flag_reg(3) = ’1’ then

immediate_int <= "0000000000000000" &

immediate_int(15 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "011" =>

ins_int <= ANI;

if flag_reg(3) = ’1’ then

immediate_int <= "0000000000000000" &

immediate_int(15 downto 8) &

APPENDIX C. VHDL CODES 126

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "100" =>

ins_int <= ORI;

if flag_reg(3) = ’1’ then

immediate_int <= "0000000000000000" &

immediate_int(15 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "101" =>

ins_int <= SBS;

op_int <= STORE1;

if flag_reg(3) = ’1’ then

immediate_int <= "000000000000000000000000" or

immediate_int & instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "110" =>

ins_int <= LDS;

op_int <= LOAD1;

if flag_reg(3) = ’1’ then

APPENDIX C. VHDL CODES 127

immediate_int <= "000000000000000000000000" or

immediate_int & instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "111" =>

ins_int <= STS;

op_int <= STORE1;

if flag_reg(3) = ’1’ then

immediate_int <= "000000000000000000000000" or

immediate_int & instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when others =>

ins_int <= NOP;

op_int <= CONTROL;

reg_src1_int <= Default_src1_reg;

reg_src2_int <= Default_src2_reg;

reg_tgt_int <= Default_tgt_reg;

end case;

end if;

--------------------------------Type E2 instructions -----------------

if Instr_Reg(15 downto 14) = "10" then

reg_src1_int <= instr_reg(13 downto 11);

reg_src2_int <= instr_reg(13 downto 11);

APPENDIX C. VHDL CODES 128

reg_tgt_int <= instr_reg(13 downto 11);

case Instr_Reg(10 downto 8) is

when "000" =>

ins_int <= LBA;

op_int <= LOAD0;

if flag_reg(3) = ’1’ then

immediate_int <= "000000000000000000000000" or

immediate_int & instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "001" =>

ins_int <= LDA;

op_int <= LOAD0;

if flag_reg(3) = ’1’ then

immediate_int <= immediate_int or

"000000000000000000000000" &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "00000000000000000000000" &

instr_reg(7 downto 0) & ’0’;

end if;

when "010" =>

ins_int <= STA;

op_int <= STORE0;

if flag_reg(3) = ’1’ then

immediate_int <= immediate_int or

"000000000000000000000000" &

APPENDIX C. VHDL CODES 129

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "00000000000000000000000" &

instr_reg(7 downto 0) & ’0’;

end if;

when "011" =>

ins_int <= SBA;

op_int <= STORE0;

if flag_reg(3) = ’1’ then

immediate_int <= "000000000000000000000000" or

immediate_int & instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "100" =>

ins_int <= LAL;

op_int <= LOAD0;

if flag_reg(3) = ’1’ then

immediate_int <= immediate_int or

"000000000000000000000000" &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "00000000000000000000000" &

instr_reg(7 downto 0) & ’0’;

end if;

when "101" =>

ins_int <= STL;

op_int <= STORE0;

APPENDIX C. VHDL CODES 130

if flag_reg(3) = ’1’ then

immediate_int <= immediate_int or

"000000000000000000000000" &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "00000000000000000000000" &

instr_reg(7 downto 0) & ’0’;

end if;

when "110" =>

ins_int <= LSL;

op_int <= LOAD2;

if flag_reg(3) = ’1’ then

immediate_int <= "0000000000000000" &

immediate_int(15 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

when "111" =>

ins_int <= SSL;

op_int <= STORE2;

if flag_reg(3) = ’1’ then

immediate_int <= "0000000000000000" &

immediate_int(15 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "000000000000000000000000" &

instr_reg(7 downto 0);

end if;

APPENDIX C. VHDL CODES 131

when others =>

ins_int <= NOP;

op_int <= CONTROL;

reg_src1_int <= Default_src1_reg;

reg_src2_int <= Default_src2_reg;

reg_tgt_int <= Default_tgt_reg;

end case;

end if;

------------------------------Type F instructions --------------------

if instr_Reg(15 downto 14) = "11" then

reg_src1_int <= Default_src1_reg;

reg_src2_int <= Default_src2_reg;

reg_tgt_int <= Default_tgt_reg;

case instr_Reg(13 downto 12) is

when "00" =>

ins_int <= LEA;

op_int <= REGREG3;

reg_src1_int <= "111";

reg_src2_int <= "111";

reg_tgt_int <= "111";

if Flag_Reg(3) = ’1’ then

immediate_int <= immediate_int(31 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "0000000000000000000" &

instr_reg(11 downto 0) & ’0’;

end if;

APPENDIX C. VHDL CODES 132

when "01" =>

ins_int <= JMP;

op_int <= JUMP;

if Flag_Reg(2) = ’1’ then

if Flag_Reg(3) = ’1’ then

immediate_int <= immediate_int(31 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "0000000000000000000" &

instr_reg(11 downto 0) & ’0’;

end if;

end if;

when "10" =>

ins_int <= JPR;

op_int <= JUMP;

if Flag_Reg(2) = ’1’ then

if Flag_Reg(3) = ’1’ then

immediate_int <= immediate_int(31 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "0000000000000000000" &

instr_reg(11 downto 0) & ’0’;

end if;

end if;

when "11" =>

ins_int <= CAL;

op_int <= INDXS2;

reg_src1_int <= "110";

reg_src2_int <= "110";

reg_tgt_int <= "110";

if Flag_Reg(3) = ’1’ then

APPENDIX C. VHDL CODES 133

immediate_int <= immediate_int(31 downto 8) &

instr_reg(7 downto 0);

pf_int <= ’0’;

else

immediate_int <= "0000000000000000000" &

instr_reg(11 downto 0) & ’0’;

end if;

when others =>

ins_int <= NOP;

op_int <= CONTROL;

end case;

end if;

end process instr_dec_process;

-------------------------- REGISTER DEFINITIONS ----------------------

instr_fetch : process(clock, en_inf)

begin

if rising_edge(clock) and en_inf = ’1’ then

for i in instr_reg’range loop

instr_reg(i) <= data_bus(i);

end loop;

end if;

end process instr_fetch;

exc_register : process(clock, en_exc)

begin

if rising_edge(clock) and en_exc = ’1’ then

for i in immediate_int’range loop

immediate_exc(i) <= immediate_int(i);

end loop;

instr_exc <= ins_int;

operat_exc <= op_int;

cycle_exc <= cyc_exc_int;

APPENDIX C. VHDL CODES 134

reg_tgt <= reg_tgt_int;

reg_src1 <= reg_src1_int;

reg_src2 <= reg_src2_int;

end if;

end process exc_register;

adr_register : process(clock, en_exc)

begin

if rising_edge(clock) and en_exc = ’1’ then

instr_adr <= ins_int;

operat_adr <= op_int;

cycle_adr <= cyc_exc_int;

reg_tgt_adr <= reg_tgt_int;

reg_src1_adr <= reg_src1_int;

reg_src2_adr <= reg_src2_int;

for i in immediate_int’range loop

immediate_adr(i) <= immediate_int(i);

end loop;

end if;

end process adr_register;

read <= read_int;

write <= write_int;

flag_register : process(clock)

begin

if rising_edge(clock) then

flag_reg(0) <= cy_int;

flag_reg(1) <= ov_int;

flag_reg(2) <= cd_int;

flag_reg(3) <= pf_int;

flag_reg(4) <= ie_int;

flag_reg(5) <= ip_int;

flag_reg(6) <= se_int;

flag_reg(7) <= pd_int;

APPENDIX C. VHDL CODES 135

end if;

end process flag_register;

cyc_exc_out <= cycle_exc;

ins_exc_out <= instr_exc;

ins_adr_out <= instr_adr;

op_exc_out <= operat_exc;

op_adr_out <= operat_adr;

cyc_adr_out <= cycle_adr;

CY_OUT <= flag_reg(0);

cd_out <= flag_reg(2);

PF_OUT <= flag_reg(3);

mux_reg : process(reg_tgt, reg_src1, reg_src2)

begin

reg_tgt_out <= reg_tgt;

reg_src1_out <= reg_src1;

reg_src2_out <= reg_src2;

if (cycle_exc = IND) then

if ((instr_exc = PSH)or(instr_exc = POP)or(instr_exc = CLX)or

(instr_exc = PSL)or(instr_exc = PPL)) then

reg_src1_out <= reg_src2;

end if;

elsif (cycle_exc = EXC1) then

if (operat_exc = REGREG1) then

reg_src2_out <= reg_src1;

elsif (operat_exc = REGREG3) then

reg_tgt_out <= increment(reg_tgt);

reg_src1_out <= increment(reg_src1);

elsif ((instr_exc = LBX)or(instr_exc = LDX)or(instr_exc = LXL))

then

reg_src1_out <= reg_src2;

reg_src2_out <= increment(reg_src2);

APPENDIX C. VHDL CODES 136

elsif ((instr_exc = SBX)or(instr_exc = STX)) then

reg_src2_out <= increment(reg_src2);

elsif (instr_exc = SXL) then

reg_src1_out <= reg_src2;

reg_src2_out <= increment(reg_src1);

elsif ((instr_exc = SBS)or(instr_exc = STS)or(instr_exc = SSL))

then

reg_src2_out <= "110";

elsif ((instr_exc = PSH)or(instr_exc = POP)or(instr_exc = CLX)or

(instr_exc = PSL)or(instr_exc = PPL)) then

reg_src1_out <= reg_src2;

end if;

elsif (cycle_exc = EXC2) then

if ((instr_exc = LBX)or(instr_exc = LDX)or(instr_exc = LXL))then

reg_src1_out <= reg_src2;

reg_src2_out <= increment(reg_src2);

elsif ((instr_exc = SBX)or(instr_exc = STX)) then

reg_src2_out <= increment(reg_src2);

elsif (instr_exc = SXL) then

reg_src1_out <= reg_src2;

reg_src2_out <= increment(reg_src1);

elsif ((instr_exc = SBS)or(instr_exc = STS)or(instr_exc = SSL))

then

reg_src2_out <= "110";

elsif ((instr_exc = PSH)or(instr_exc = CLX)or(instr_exc = PSL))

then

reg_src2_out <= reg_src1;

reg_tgt_out <= reg_src1;

elsif ((instr_exc = POP)or(instr_exc = PPL)) then

reg_src1_out <= reg_src2;

end if;

elsif (cycle_exc = DST1) then

if (instr_exc = CLX) then

APPENDIX C. VHDL CODES 137

reg_src2_out <= reg_src1_adr;

reg_tgt_out <= reg_src1_adr;

elsif (instr_exc = PSL) then

reg_src1_out <= increment(reg_src1_adr);

reg_src2_out <= reg_src1_adr;

reg_tgt_out <= reg_src1_adr;

elsif ((instr_exc = STL)or(instr_exc = SXL)or(instr_exc = SSL))

then

reg_src1_out <= increment(reg_src2_adr);

reg_tgt_out <= reg_src2_adr;

end if;

elsif (cycle_adr = DFT1) then

if ((instr_exc = LAL)or(instr_exc = LSL)or(instr_exc = PSL)) then

reg_src2_out <= reg_src1_adr;

reg_tgt_out <= increment(reg_src1_adr);

elsif (instr_exc = LXL) then

reg_src1_out <= reg_src2_adr;

reg_tgt_out <= increment(reg_tgt_adr);

elsif (instr_adr = SWI)or(instr_adr = CLX)or(instr_adr = RET)

then

PC_MODE <= DATA_LOW;

end if;

elsif (cycle_adr = DFT2) then

if (instr_adr = SWI)or(instr_adr = CLX)or(instr_adr = RET) then

PC_MODE <= DATA_HIGH;

end if;

elsif (cycle_exc = EXC3) then

if ((instr_exc = POP)or(instr_exc = PPL)) then

reg_src2_out <= reg_src1;

reg_tgt_out <= reg_src1;

elsif ((instr_exc = PSH)or(instr_exc = CLX)or(instr_exc = PSL))

then

APPENDIX C. VHDL CODES 138

reg_src1_out <= reg_src2;

end if;

elsif (cycle_exc = EXC0) then

if (instr_exc = RST) then

PC_MODE <= RST;

end if;

end if;

end process mux_reg;

end control_unit_behave;

Appendix D

Stimuli Files

D.1 Finite State Machine

In order to check the FSM itself, we just disable all but one FSM in the arbiter.

When only one FSM is operating, no hazard will occur. We can examine it seper-

ately.

For the testing of the FSM there are two stimuli-files. The first just displays

the basic signals, it will ge more easy to understand. The second displays more

signals. It gives more detailes information but is more complex.

D.1.1 Basic Signals

##

do -file for testing antares FSM with basic signals

##

restart -force -NOwave -NOlist -NOLOg -NOBreakpoint

input signals

output signals

add wave control_fsm1/enable

APPENDIX D. STIMULI FILES 140

add wave control_fsm1/ready

add wave control_fsm1/current_st

add wave control_fsm1/next_st

add wave control_fsm1/op

add wave control_fsm1/instr_dec

add wave control_fsm1/alu

add wave control_fsm1/mem

#internal signals

view wave

force clock 1 0,0 20 -r 40

force reset 1 0,0 25, 1 60

force ins SCF 0

force op CONTROL 0

force ins CLR 70

force op REGREG0 70

force ins LBA 110

force op LOAD0 110

force ins MVL 150

force op REGREG3 150

force ins GFL 190

force op REGREG2 190

force ins JMP 230

force op JUMP 230

force ins CSE 270

force op CONTROL 270

force ins INV 310

force op REGREG0 310

force ins NEG 350

force op REGREG0 350

force ins LPH 390

force op CONTROL 390

APPENDIX D. STIMULI FILES 141

force ins STL 430

force op STORE0 430

run 800

D.1.2 All Signals

##

do -file for testing antares FSM with all signals

##

restart -force -NOwave -NOlist -NOLOg -NOBreakpoint

input signals

add wave clock

add wave reset

output signals

add wave en_exc

add wave en_adr

add wave en_inf

add wave read

add wave write

#internal signals

add wave ins1

add wave op1

add wave ins2

add wave op2

add wave ins3

add wave op3

add wave next_cycle1

add wave cycle1

add wave next_cycle2

add wave cycle2

APPENDIX D. STIMULI FILES 142

add wave next_cycle3

add wave cycle3

add wave mem_use

add wave alu_use

view wave

force clock 1 0,0 20 -r 40

force reset 1 0,0 25, 1 60

force ins LBA 110

force op LOAD0 110

force ins MVL 180

force op REGREG3 180

force ins JMP 350

force op JUMP 350

force ins NEG 420

force op REGREG0 420

force ins LPH 600

force op CONTROL 600

force ins STL 780

force op STORE0 780

force ins SCF 900

force op CONTROL 900

force ins CLR 1100

force op REGREG0 1100

force ins GFL 1200

force op REGREG2 1200

force ins CSE 1300

force op CONTROL 1300

force ins INV 1400

force op REGREG0 1400

force ins SCF 1540

force op CONTROL 1540

APPENDIX D. STIMULI FILES 143

run 1700

D.2 Arbiter

##

do -file for testing antares arbiter

##

restart -force -NOwave -NOlist -NOLOg -NOBreakpoint

input signals

add wave clock

add wave reset

output signals

add wave en_exc

add wave en_adr

add wave en_inf

add wave read

add wave write

#internal signals

add wave ins1

add wave op1

add wave ins2

add wave op2

add wave ins3

add wave op3

add wave next_cycle1

add wave cycle1

add wave next_cycle2

add wave cycle2

add wave next_cycle3

add wave cycle3

add wave mem_use

APPENDIX D. STIMULI FILES 144

add wave alu_use

view wave

force clock 1 0,0 20 -r 40

force reset 1 0,0 25, 1 60

force ins SCF 460

force op CONTROL 460

force ins CLR 520

force op REGREG0 520

force ins LBA 110

force op LOAD0 110

force ins MVL 150

force op REGREG3 150

force ins GFL 590

force op REGREG2 590

force ins JMP 230

force op JUMP 230

force ins CSE 660

force op CONTROL 660

force ins INV 700

force op REGREG0 700

force ins NEG 350

force op REGREG0 350

force ins LPH 390

force op CONTROL 390

force ins STL 430

force op STORE0 430

force ins SCF 740

force op CONTROL 740

run 800

Bibliography

[Bre97] Barry B Brey. The Intel Microprocessors 8086 ... Pentium Pro Processor.
Prentice Hall, New Jersey, 5th edition, 1997.

[GAS90] Randall L. Geiger, Phillip E. Allen, and Noel R. Strader. VLSI Design
Techniques for Analog and Digital Circuits. McGraw-HILL, Singapore,
1990.

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture. A
Quantitative Approach. Morgan Kaufmann, San Mateo, California, 1st
edition, 1990.

[HP94] John L. Hennessy and David A. Patterson. Rechnerarchitektur.
Vieweg&Sohn, Braunschweig/Wiesbaden, 1994.

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture. A
Quantitative Approach. Morgan Kaufmann, San Mateo, California, 2nd
edition, 1996.

[HP02] John L. Hennessy and David A. Patterson. Computer Architecture. A
Quantitative Approach. Morgan Kaufmann, San Francisco, California,
3rd edition, May 2002.

[IEE88] IEEE Std 1076-1987. IEEE Standard VHDL Language Reference Man-
ual. Institute of Electrical and Electronical Engineers, New York, 1988.

[Jan00] Dirk Jansen. Architecture and Compiler for an ANSI C-targeting Re-
duced Instruction Set Core for Embedded Systems (ANTARES). Tech-
nical Report ICS-00-26, University of California, Irvine, July 2000.

[Mär01] Christian Märtin. Rechner Architekturen. Fachbuchverlag Leipzig, Mu-
nich, Vienna, 2001.

[Mes96] Frank Messicci. Erweiterung der DXLS um eine 5-stufige Pipeline. Tech-
nical report, Universität Stuttgart, Institut für Parallele und Verteilte
Höchstleistungsrechner, Stuttgart, Germany, 1996.

BIBLIOGRAPHY 146

[PB01] Sujan Pandey and David Berner. Development of a Microprocessor
Core ANTARES. Technical report, Fachhochschule Offenburg, Novem-
ber 2001.

[Ten95] Klaus TenHagen. Abstrakte Modellierung Digitaler Schaltungen.
Springer, Berlin, 1995.

[Web97] Lukas Weberruß. Erweiterung des DXLS-Prozessor-modells um eine 5-
stufige Pipeline. Technical Report 1625, Universität Stuttgart, Institut
für Parallele und Verteilte Höchstleistungsrechner, Stuttgart, Germany,
July 1997.

I grant the University of Applied Sciences, Fachhochschule Offenburg the non-
exclusive right to use this work for the University’s own purposes and to make
single copies of the work available to the public on a not-for-profit basis if copies
are not otherwise available.

David Berner

