FERMAT

Formal Engineering Research using
Methods, Abstractions and Transformations

:,':I-: + }"J’.’ - Z' F 4
n'a pas de solution pour des entiers

Technical Report No: 2004-01

Extreme Formal Modeling to Capture

Abstract -- In this paper we show the

usefulness of an agile formal method (named i1fi i ildi

XFM) based on extreme programming concepts SpECIflcatlon for a Smart BU Ild | ng
to construct abstract models from a natural] .
language specification of a complex system. Control System into a Constructively
Building formal models for verification purposes

has been used in the industry for two different

usage modes: (i) Descriptive Formal Models CorreCt MOdeI-

(DFM) are used to capture an implementation in

an abstract model to submit to analysis by

model checking tools, (ii) Prescriptive Formal

Models (PFM) are used to capture natural Syed M. Suhaib, David Berner

language specifications in a formal model to Sandeep K. Shukla

analyze consistency of the specification and also
as a reference model to compare a DFM against .
it. We propose XFM as a methodology to {SSUha_"b’ ShUKla}_@,Vt'edu’
incrementally build a correct PFM from a natural david.berner@irisa.fr

language specification. To illustrate our

methodology we chose PROMELA as modeling

language, and linear time properties as

specification language. However, our approach

could be wused for other modeling and

specification languages. We llustrate the

methodology with an extensive example of a

Smart Building control. It features intelligent

control and interaction of illumination, heating,

cooling, safety, security, and appliances. We

find this methodology very useful as an well

defined way to go about constructing PFMs from

documented specifications and guarantee

correct by construction PFMs. From our —

experience in industrial formal verification, we

have found verification engineers grappling with

how to go about building PFMs, and we position C

XFM as a prescription for verification engineers.

We recognize that expert formal Methodists can é
build correct PFMs without following through

such an incremental methodology, but for wide

acceptance of formal methods and verification

by designers and validation engineers XFM will

be quite useful. It must be noted that our

approach in using extreme programming ideas

to formal modeling is distinct from a recent work

by Henzinger et.al., where they show how to - . -

reuse a previous model checking results to V 1 r g]_ n 1 aT e C h
incrementally model check a modification of a

model. Their technique can be plugged into XFM VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
in the essential regression steps of XFM..

Extreme Formal Modeling to Capture Specifications for a Smat
Building Control System into a Constructively Correct Model

Syed Suhaib David Berner Sandeep Shukla

Virginia Tech INRIA/IRISA Virginia Tech
Blacksburg, VA USA Rennes, France Blacksburg, VA USA

Contents

1

5

Introduction
1.1 Motivation for the Smart Homeexample

Related Work

Modeling Approach

3.1 Extreme Programming i e e e e e
3.2 ModelingSteps e e e
3.3 Difficultiesand Details e
3.4 Advantages

The Smart Home Case Study

4.1 Natural Language Specification. e
4.1.1 Lighting. e e
4.1.2 Temperature Control. e

4.1.3 SeCUrity. o e
4.1.4 Safety..

4.2 Capturing ofthe FormalModelo

Conclusion

List of Figures

1 State of the art to captureaformalmodel
2 Capturing a formal modelwith XFM
3 Behavior during the modeling process (a) and for the modeksult (b)
4 FSMs of properties1 (a)and 4 (b) i
5 Promela code for first property e
List of Tables
1 XFM modelingsteps e e
2 LTL Properties for the Smart Homemodel,
3 Definitions for the LTL Properties i mme e

Abstract

In this paper we show the usefulness of an agile formal mefm@aed XFM) based on extreme pro-
gramming concepts to construct abstract models from a aalanguage specification of a complex
system. Building formal models for verification purposdseamg used in the industry for two different
usage modes: (i) Descriptive Formal Models (DFM) are useddpture an implementation into an ab-
stract model to submit to analysis by model checking too)(escriptive Formal Models (PFM) are
used to capture natural language specifications into a fdmmadel to analyze consistency of the speci-
fication and also as a reference model to compare a DFM agé#ingfe propose XFM as a methodology
to incrementally build a correct PFM from a natural languagjgecification. To illustrate our method-
ology we chose PROMELA as modeling language, and lineargihmgerties as specification language.
However, our approach could be used for other modeling aretifipation languages. We illustrate
the methodology with an extensive example of a Smart Bgilclmtrol system. It must be noted that
our approach in using extreme programming ideas to formadletiag is distinct from a recent work by
Henzinger et.al., where they show how to reuse previous Insbdeking results to incrementally model
check a modification of a model. Their technique can be pldgg® XFM in the essential regression
steps of XFM.

1 Introduction

Due to increasing recognition of the need for formal vertfmaand formal methods in hardware and
software industry, there has been a surge in activitiesanrttustry to build formal models and apply
formal model checking, or use the models for test generdéan [17]). From our experience, building
formal models for verification purposes is being used in tiwistry for two different usage modes: (i)
Descriptive Formal Models (DFM) [2] are used to capture aplementation into an abstract model to
submit to analysis by model checking tools, (ii) Prescviptrormal Models (PFM) [4, 18, 3] are used to
capture natural language specifications into a formal mtmlahalyze consistency of the specification
and also as a reference model to compare a DFM against it. ¥g@pe Extreme Formal Models (XFM)
as a methodology to incrementally build a correct PFM fromatural language specification. Our
approach is necessitated by the absence of a prescriptitilowrto go about building these models
from natural language documents in the literature. For genn [18, 17] SMV specifications of Bus
Protocols are developed as PFM but the goal of these PFM keettkaconsistency or test generation and
it does not prescribe any incremental methodology basedgression. In [4] the specification language
ESL is described in which all properties are specified togreéimd then an automaton is synthesized
from the complete ESL specification. This wholesome apgrazten has the problem that (i) the
inconsistency in the properties or mistakes in capturirgyititended property are found late, (ii) the
synthesis of automata may explode in size when everythiognsidered together. We have tried our
hands on some of th@-automata synthesis tools [14] and usually when the numbproperties are
sizable, such synthesis tools do not work well. It might b#dseand more feasible to construct the
model by hand incrementally as is explained later in the papd regressively model check it to ensure
constructively correct models.

To illustrate our methodology we chose PROMELA [12] as modglanguage, and linear time prop-
erties as specification language. However, our approada deuused for other modeling and specifi-
cation languages as well. We illustrate the methodologk @it extensive example of a Smart Building
control. It features intelligent control and interactidnilumination, heating, cooling, safety, security,
and appliances. We find this methodology very useful as adefihed way to go about constructing
PFMs from documented specifications and guarantee coryembristruction PFMs. From our experi-

ence in industrial formal verification, we have found vedfion engineers grappling with how to go

about building PFMs, and we position XFM as a prescriptianvigrification engineers. We recognize
that expert formal methodists can build correct PFMs witffollowing through such an incremental
methodology, but for the wide acceptance of formal methadk\erification by designers and valida-
tion engineers XFM is quite useful. It must be noted that gupraach in using extreme programming
(XP) ideas to formal modeling is distinct from a recent woykHbenzinger et.al. [9], where they show
how to reuse previous model checking results to incremigntaddel check the modification of a model.

Their technique can be plugged into XFM in the essentialaggjon steps of XFM, though.

English

Specification
Linear Time Model ad hoc Abstract
Properties > Checking Model

Figure 1. State of the art to capture a formal model

In a typical industry PFM modeling flow (Figure 1), a formal deb checker is used to verify prop-
erties of the model. There are several drawbacks in thisoagpr One is that the building of both the
model and the properties is error prone and the effort of mbdiéding and debugging grows expo-
nentially along with the size of the model. Another problenthat there is no way of guaranteeing the
inclusion of all properties, thus reducing the significantéhe model. Finally, there is a tendency that
the model includes more functional details than its spetiben describes. Implementation details can
get into the abstract model, that make it have unwanted piiepe

XFM attempts to overcome these problems and restrictiongxgloits XP techniques in order to
capture formal specification into abstract models. Figuegicts XFM'’s incremental approach to
formal modeling. From a spoken language specification, vgé dierive a simple formal property and
then build an abstract model for this property. After thag @heck whether this property holds for
the model. Once this property is verified, we take a secondgrty, extend the model according to
this property, and model check for both properties. Thicedure is repeated until the abstract model
contains all functionality describes in the natural largpiapecification. Whenever a property fails to
validate, it usually is straightforward to find the bug as iishbe related to the latest additions. The

overall effort of modeling and bug fixing grows linearly atpwith the size of the model.

Property Model

> 1 -
Model Check
En_g_lish_ q Property — Model
Specification 142

Model Check l

I_> Property Final
1+2+...+N Model

Model Check

Figure 2. Capturing a formal model with XFM

1.1 Motivation for the Smart Home example

As technology advances, the cost and size of electronic oopis are becoming cheaper, smaller,
and consume less power. As a result, these components anaibpgcan increasingly important part of
our environment. Ubiquitous computing is no more sciendfi¢c but instead an emerging technologi-
cal area. There are electronic devices such as sensorgasamersonal assistants, and microprocessors
that provide us with information and transparently perfeasks without our knowledge of its working.
This is what makes our environment “smart”. A Smart Home tisese techniques to make living condi-
tions more convenient and adapts to its residents’ needsihlA“smart” home does not directly burden
its residents with technology, but reduces the presencecbihblogy by automating tasks of everyday
life. However, for “smart’-ness, the technology must bestaicted such that the resident is unaware of
the complex technology behind the automation. So, one itapbobjective of a Smart Home is to take
charge of obvious and repetitive tasks. Although the needxplicit control is taken away, the resident
has supervisory control over the system.

It is desirable for a person that the environment is awareisihér presence, acts according to his
preferences, and can be communicated with easily in mang.wByt while people are used to and

accept that programs on their PC sometimes crash or behasteguoately, it is unacceptable that the

4

home environment shows any unwanted behavior. It is un#ifilekthat a house refuses access to its
resident or that vital functions such as heating, lightimgthe security system do not behave the way
that they should. On account of this the development of timrobfor a Smart Home not only has to be
done with diligence, but it has to include a methodology twempletely rules out such failures. Extreme
Modeling is a methodology that not just provides for a carraodel of the system, it also makes the

process of model-building and capturing of formal spediitces faster and more intuitive.

2 Related Work

General information about XP and agile techniques can bedaw [23, 7, 1, 22]. There are some
projects that also use agile methods in the domain of moglel verification. Herranz and Moreno-
Navarro from TU Madrid describe in [11, 10] the integratidnrsome XP practices to formal methods
using the SLAM software tool [8]. Their environment genessequential programs from formal ex-
pressions using an assertion based JAVA development frarkeWhile our work involves the use of
XP to model complex concurrent hardware systems their @gprcs directed towards sequential soft-
ware programs. Henzinger et.al. [9] show how to reuse pusuimodel checking results to incrementally
model check the modification of a model. While this a compjedéferent approach, these technique
can be used in XFM in order to speed up the single model chgaiteps. Besides the typical method to
capture formal models, there is other research going ondedspp this process, such as the automatic
synthesis of models from temporal constraints [20], buhiggality models are still created manually
by qualified engineers.

In this paper, we formally model a Smart Home system andyésfproperties. A lot of research
[5, 16] as well as implementation models of Smart Homes existe O<YGEN project of MIT [13]
focuses on pervasive human centered computing and angetglroom. The Internet Home built by
Cisco [21] involves security, remote monitoring, and cohtif appliances. The Adaptive House built by
the University of Colorado [15] also contains appliancegegainment centers as well as temperature
and lighting control units. However, it has the approach ofoa-invasive technology, where usage
patterns are learned over time and then successively atédnighis is in contrast to the Cisco Internet

Home where the control is fixed and the focus is on the abditgmotely control the home environment.

3 Modeling Approach
3.1 Extreme Programming

Rules of XFM are based on rules of XP. Many XP rules do direapiply to XFM. There is not
one XP methodology, but rather a collection of techniquese @asic XP technique is to define “user
stories” - individual cards that point out specific implertaion details and requirements. These user
stories act as a detailed guideline for the programmer. Tene is a rule to write tests before the actual
code. These tests strictly adhere to what is defined in thestisees. Then the actual implementation
is programmed in a way, that just these tests are satisfigqoeds like generality and extensibility are
ignored. User stories are successively added in increingteas, always building upon the previous
model. Whenever the model seems inappropriate for themuuser story or when its implementation
seems circumstantial, it is considered to refactor the indidbenever a bug is found, the associated test
is updated, and after each iteration step, all tests areoraheck for broken code. Other XP techniques
that proved to be beneficial to most programming projectscatiective code ownership, working in

pairs, and a short team meeting every morning.
3.2 Modeling Steps

Figure 2 illustrates the flow of the presented modeling apgincand Table 1 shows the single steps
that have to be performed in order to follow this methodolofy a first step, a user story has to be
defined. As in XP, it describes a simple but precise aspedtteo$ystem. In a second step this aspect is
expressed in linear time. As a third step a model has to bethail expresses only this first property. If
there is already an existing model, it has to be extendedjusththe functionality noted in the current
user story. After the model satisfies the current propelitgravious properties have to be checked for in
a forth step and in case a property in not valid any more, theéeaiwas to be changed accordingly. The
fifth step asks to check if there are more user stories to ctwgs, we continue at step one, otherwise

the model-building process is finished.

Table 1. XFM modeling steps
Write down user story

Express it as a linear time property
3 | Construct a model that expresses only this first property or
extend existing model to just satisfy this property
4 | Make sure the model still satisfies all previous properties
5 | Ifthere are more user stories left, go back to step 1
stop if all specified functionality is incorporated

H

N

3.3 Difficulties and Details

The XFM steps are in detail not always as simple as they miggtns But as most problems encoun-
tered are known from the traditional capturing of formal raksgthey can be dealt with in the same way.
The first challenge is to get the natural language specihicatomplete and correct. Then, the order
in which the user stories are specified can make a differant®ei complexity of the model. There is
no ultimate answer for this, but experience helps a lot amh éfvan initial choice was not so good,
the model can be simplified in a later refactoring step. Thilimg of formal properties is not always
straightforward. However, it can be assisted with methadktaols such as specification patterns [6]
and property elucidation [19], and their sanity can be chddior with tools such as LTL 2 BA [14],
which transforms an LTL property into a finite state machiSeéep three of the process requires - just
as in XP - the discipline of the engineer to only model the fiomality specified in the property. This
is also the stage where refactoring has to be done when néededer to keep the model concise. In
the last step we have to make sure, that the model contaispetified functionality. Again there is
no general solution for this, but simulating the model is @&y to get more confidence about this.
Contradicting properties are discovered when during aatiten not all properties can be satisfied any
more.

Putting this new methodology to work does not mean ignorihgravious results in overcoming
known obstacles, but contrarily it encourages the use ofhalte techniques for the single steps to
obtain an even better result. As always, results signifigamiprove and can be obtained faster once the

engineer gets more experienced and familiar with the psoces

Formal Properties

Formal Model
Specification

a) b)

Figure 3. Behavior during the modeling process (a) and fentlodeling result (b)

3.4 Advantages

Following an XFM based methodology, brings about a numbadeantages. One of them is speed.
The small debugging steps between the iterations can befdstee than debugging the complete model
in the end. Besides speed, the quality of the resulting fomualel is higher. Figure 3a illustrates how
the amount of behavior for the properties and the abstradeht®velop during the capturing process. At
any point, the behavior of the formal properties is more gartban that of the abstract model. Both are
more general than the behavior of the specification. In e&chtion step their behavior is confined by
adding additional properties and details to the model. &the specification is not altered, the behavior
of the specification does not vary during this process. A&t of the capture of the model ideally all
three behaviors are identical, but in practice there araydvemall gaps (Figure 3b). The gap between
the formal properties and the specification indicates howhraystem functionality is not expressed in
the formal properties, and the gap between the formal mouktlze specification marks the amount of
functionality the model contains that is unaccounted fahmspecification. The latter is small because
we only add functionality from simple user stories. The ferrgap is small as the process makes sure

that the gap between properties and model never gets big ifir¢h place.

4 The Smart Home Case Study

4.1 Natural Language Specification

The example of a Smart Home we are describing here inclutlbasit functionalities for lightning,
temperature control, security, and safety as well as sonené&d features for advanced control. We
describe the functionalities separately for the diffeiegories although it is not possible to do a clear

separation as some functions require interaction of skvatagories.

4.1.1 Lighting.

Lighting control illuminates rooms depending on the briggds outside. There are light sensors at every
window. If during the day it is brighter than a pre-definedueallight in the room is switched off. Once

it gets dark, the light is switched back on. Obviously roonitheut windows such as the bathrooms do
not have light-sensors. Every person carries an RFID (Reiquency identification) in their jewelry
or shoes to detect the presence of a person, and the ligtite lmouse are controlled depending on the
presence of persons in the rooms. If a room is not used for thare10 minutes, light is switched off.

In addition for some rooms such as the living room and thedi@uds, the resident can choose a lighting
intensity from 0 to 100 percent. Whenever the room is afrestupied, light switches to the previous
selected intensity. However, the next evening, as the $glitiches on when it is getting dark outside, it

always starts with 100 percent intensity.

4.1.2 Temperature Control.

Temperature control involves temperature sensors in e, and the control of heating and air
conditioning. For each room, three temperature levels eatiediined: comfort level, power-save level,
and the vacation level. The comfort level is the temperatiueeresident likes to have when the room
is being used. The power-save level defines the temperatuserbom that is not being used. It saves
power by lowering AC and heating, but still keeping the terapgre at a level so that the room can
reach comfort level in a reasonable time. The vacation ldgéhes the temperature for a room that is
not used for a longer period of time. In the vacation levely dreating is operated to prevent the room

from freezing.

4.1.3 Security.

Security uses motion sensors in every room to detect if sameopresent in a room or not. If there is
motion detected but no person of the household identifidtepast 5 minutes, an alarm signal is issued.
Whenever the alarm signal is issued, the safety alarm sifiresxd a message is sent to the resident’s
cellular phone along with an email. If the alarm is not tureédwvithin the next 5 minutes, a signal is

sent to security for help.

4.1.4 Safety.

Safety is dealing with malfunctioning devices which mays&aunforeseen hazards such as fire, flooding
etc. One of the main components of safety are the smoke deteghich are installed in every room to
monitor smoke levels. Also it is monitored if the temperatig in a safe range. Once a certain safety
constraint is violated, a safety alert is raised and disgglayn the screens available in every room. In
addition a message is sent to the residents phone and emailflzohard safety constraint is violated,

fire extinguishing sprinklers are activated and the fire depent is notified.

4.2 Capturing of the Formal Model

In order to capture the formal model we identify a basic fiorality of the system, specify a formal
linear time property for this functionality and then buildreodel that satisfies this property. Our first
property states that if it is sufficiently bright outsideetight is never switched on in the room. Table 2
shows the corresponding LTL property. To make sure thatgloperty expresses what we intend to
express, we enter the LTL formula into the LTL 2 BA tool in orde get the corresponding automaton.
Figure 4(a) shows the FSM corresponding to property 1 anteTallists the definitions necessary to
verify it with SPIN. Since this property is quite simple irnet difficult to see, that it expresses the correct
behavior, but for more complex properties it is importantriake sure they are correct before checking
the model for it. Now we start writing a model in PROMELA thattisfies exactly this one property.
Here it is important not to introduce more functionality thspecified. However, the model always
contains parts that have no correspondence in a formal gyogéis is because certain things such as
initialization of variables and changes of state varials not be expressed in linear time properties.

Figure 5 shows the PROMELA model for the first property. Itéeas the initialization processit and

10

Table 2. LTL Properties for the Smart Home model

ature in any room next the sprinkler system
started

1 | If light is over 500 lumen light is not switchegd[](klact — kbright)
on
2 | If the room is not used for more than 10 minf](kaway10m— !Klit)
utes, the light is always off
3 | If there is light in the room, either it is suffi- [J(klit — (kherelOm && klact))
ciently dark outside and someone is using the
room or someone has been in the room in the
last 10 minutes
4 | If the light is off, either it is sufficiently bright [J('klit — ('klact || X !klact || kaway10m))
already, or itis just getting sufficiently bright or
nobody has been in the room recently.
5 | If no identified person is in the room and ther@(((kempty && kmotion) U alarm)|| 'kmo-
is motion the alarm is triggered tion || (kmotion && 'kempty))
6 | Temperature is at comfort level if the room hafg(ktcomfort — khere15m)
been used within the last 15 minutes
7 | Temperature is at power save level if the roomfi(ktpowersave— kaway2h)
has not been used for more than 2 hours.
8 | Temperature is at vacation level if the room hg§ktvacation— kaway2d)
not been used for more than 2 days.
9 | Atdawn (when the light gets active) intensity|ig]((!llact U lintmax) || llact)
always at 100 percent.
10| If there is some smoke or a high temperature [f((lowsmoke|| temphigh)— X safetyhazard)
any room next a firehazard is issued
11| If there is heavy smoke or a very high tempeifj((heavysmokg| tempveryhigh)— X spkl)

is

the proces&Luminosity where the variabl&activeis set according to the current luminosity. In order

to keep the state space of the model small, we only consides thalues of brightness. All other values

do not result in any change &éctive

Only after the first property is verified, we come up with a setproperty. This property states that
if the room has not been used for more than 10 minutes, theiigtiways off. The corresponding LTL
property in Table 2 is similar to property 1. A procéd3sensdias to be added to the model that detects

if a person is in the kitchen and it counts the minutes sine&ifthen was used last. If nobody has been

there for more than 9 minutes, the light is switched off.

Property 3 describes that if there is light in the kitchemitst be sufficiently dark outside and some-

one has used the kitchen within the last 10 minutes. For tiredbmodel, we only have to add small

11

Table 3. Definitions for the LTL Properties

if

fes

1 | #define kbright klum< 500 Brightness level in the kitchen is under 500 lumen
2 | #define klact klactive True if kitchen light can be switched on, false
bright enough

3 | #define Klit klight Output for the kitchen light.

4 | #define ktcomfort ktl==comfort Temperature in the kitchen set to comfort

5 | #define ktpowersave ktl==powersave Temperature in the kitchen set to power save

6 | #define ktvacation ktl==vacation Temperature in the kitchen set to vacation

7 | #define kempty kpsens==Empty No person is in the kitchen

8 | #define alarm alert

9 | #define kherel5m kcouatl6

10| #define khere10m kcouatl1 Kitchen has been used within the last 10 minu

11| #define kaway10 kcount 10 Kitchen is unused for more than 10 minutes

12| #define kaway2h kcount 15 Kitchen is unused for more than 2 hours

13| #define kaway2d kcount 20 Kitchen is unused for more than 2 days

14| #define kpsense !(kpsens == Empty) No person detected via RFID

15| #define kmotion kmot The motion detector

16| #define lowsmoke There is some smoke in a room
((ksmoke==LOW)|(Ismoke==LOW))

17| #define heavysmokeThere is heavy smoke in a room
((ksmoke==HIGH])|(Ismoke==HIGH))

18| #define temphigh ((ktemp- 80)||(Itemp > | The temperature in a room is unusually high
80))

19| #define tempveryhigh ((ktemp > | The temperature in a room is very high
100)|(Itemp> 100))

20| #define spkl sprinkler The sprinkler system

21| #define lintmax lint == 100 Full light intensity in the living room

changes to reflect this property. Basically we have to make that the light is dependent dactive

Once these changes are performed, the property verifies ani@t®rmine the next property. Number 4

defines when the light is off in the kitchen. If the light is @fther nobody has been using the room

recently or it is sufficiently bright without light. This pperty is a good example for the interactive

model building process. While implementing the changesiénrhodel we realize that when it is just

getting bright in the morning, the light is switched on justdreklactiveis switched off. This causes the

property to fail. Now if we inverse the assignments, prop8ails. This is why we extend the property

including instants where in the next st&tactiveis true. To make sure, that this actually happens in the

next state we have to enclose the two assignments at@anicstatement. Figure 4(b) shows the corre-

sponding FSM generated by LTL 2 BA. It has very few transgibut close examination confirms that

12

.) (*Klact) || (kaway1 0m) || (klit)

1 klact

(Klact) || (kbright)

Figure 4. FSMs of properties 1 (a) and 4 (b)

bool kacti ve;
int klum
proctype KLum nosity(){
do
klum < 400 -> klum = 200; kactive =1
(100 < klum) && (klum < 700) -> klum = 400; kactive =0
kl um > 700) -> klum = 600; kactive =0
od; }
init {
kl um = 200;
kactive =1,
run KLuninosity(); }

Figure 5. Promela code for first property

the automaton follows our intention. When building the mdies independent from the model, such

details would easily get omitted. This causes later the gntgpo fail and it may be time consuming to

locate the error.

As the model now contains most of the lighting functionais now add security properties. Prop-

erty 5 exploits the motion sensors. When no person is idedtifi the room with a valid RFID and there

is motion detected an alarm is activated. The alarm signghtming a bell and send a text message to

the residents cell phone and email. As the alarm signal chnoaeur after the condition is detected, it

is most appropriate to use the until operdtofor this property. Table 2 shows all the LTL properties.

The implementation in the formal model does add some lingbe&Psenseprocess, but it does not

incur any fundamental changes.

The next user-story describes the temperature control amesi. It says that the AC/Heating system

13

has three modes of operation, each having a temperatuleatesigned. The first level is the comfort
level, it defines the temperature when the room is used. Thieme is a power save temperature that is
active whenever nobody has been using the room for morewwhdurs. And finally there is a vacation
mode that is active when a room has not been used for morewlaconsecutive days. From this user
story we obtain the three properties 6, 7, and 8. In the PROMiabdel there is already a counter that
counts the time since the room has been used last so we havefagachanges in the model. After
modifying the model, small corrections have to be performvedn checking all previous properties.

Until here, our model only comprises one room, the kitches. we have sensors for every room,
most of the control is based on the room-level. All properse far can be replicated for any other
room. The same is valid for the model. This makes our modelutamdn approach. However, in some
rooms there are additional functions that should be addedeXample we want to control the intensity
of the light in the living room and in the bedrooms. Intensityhe bedroom is set to zero, when going
to bed and in the living room it may be set to any desired vabuexample 25% for watching movies.
To add a switch that controls the light intensity resultsonltrivial LTL properties, and therefore is not
worth checking for. But additionally it says in the specifioa that when it gets dark outside and bright
again (the next day), intensity should always be at 100. fdggirement is expressed in LTL property 9
(see Table 2). To reflect this in the model, we first of all havereate the living room. This is done
by copying all kitchen processes and rename them and theatl@as. In addition t&KPsenseve get
LPsenseand so on. Then we replicate all LTL properties and the appatgdefinitions and check all
these new properties as well as the ones for the kitchen. @iee done a new processntensityis
added that switches between different levels of intens$ityis sufficiently dark in the living room. To
verify property 9 we change the intensity back to 100 as sbgets bright enough outside, i.e. as soon
aslactiveturns to zero.

As we have several rooms now, it makes sense to introducdidascthat spawn several rooms.
Safety properties such as the detection of smoke or hazatdmperatures are properties that concern
the whole house. In order to ensure the safety in the houseddéwo properties that depend on the
smoke detectors and on the temperature sensors. Propersguds a safety hazard when a certain
amount of smoke is detected or if the temperature in any raonigh or low. A safety hazard notifies

the resident about the incident but does not take any immtesd@ion yet. Once the intensity of the

14

smoke reaches another critical level, the sprinkler sysselaunched and the fire fighters are notified.
In the model, these changes induce the creation of two smwdepses that monitor the temperature and

smoke sensors in all rooms.

5 Conclusion

In this paper we demonstrate the usage of the XFM methodaleggloped by us in [3] for the formal
modeling of a large control application for a smart buildingfocuses on the concept of incremental
formal modeling based on properties from a natural langspgeification. Each property represents
a specific behavior based on which the abstract model ismmtst. The incremental approach used
in the paper helps that the constructed abstract modefisatall properties, and it ensures that the
model contains only little unwanted behavior that mightsmaa later conformance check against an
implementation to fail. Since XFM involves an iterativehiacue, the evolving abstract model facilitates
debugging whenever a property is found unsatisfied. In dachtion step the behavior is confined by
adding additional properties and details to the abstracteahd he fact that the behavior of the abstract
model is closely linked to the properties entails a closecim@ete set of properties once the abstract
model is complete. In the conventional approach, howelierabstract model tends to contain much
more functionality than specified, but less properties tegded as there is no mechanism that provides
for the exposure of all properties contained in the spetifina

The modeling example of the Smart Home demonstrates therpaiilee approach, and even if there
exist more sophisticated smart spaces, we succeeded dingud reasonably complex smart environ-
ment with little effort. Yet most importantly is not the lagmount of functionality and the different
levels of interaction, but the confidence that this model gloes with the specification without con-
taining much superfluous behavior. It shows that this meitogy lowers the hurdle for engineers to
move to formal verification or improving their results anchfidence while still being open for particular

solutions on the single steps.

References

[1] Kent Beck. Extreme Programming explained: Embrace charnfyédison Wesley, 2000.

15

[2] Bob Bentley. Validating the intel pentium 4 microproses InDesign Automation Conference
pages 244-248, 2001.

[3] David Berner, Syed Suhaib, Sandeep Shukla, and HarrteEFoXFM: Extreme Formal Method
for Capturing Formal Specification into Abstract ModelscHiical Report no. 2003-08, Virginia
Tech, FERMAT Lab, Blacksburg, VA, 2003.

[4] Edmund M. Clarke, Steven M. German, Yuan Lu, Helmut Vedhd Dong Wang. Executable
protocol specification in ESL. Ikormal Methods in Computer-Aided Desjgmages 197-216,
2000.

[5] M. Coen, B. Phillips, N. Warshawsky, L. Weisman, S. Pgtand P. Finin. Meeting the compu-
tational needs of intelligent environments: The metagistesn. Inlst Int. Workshop on Manag-
ing Interactions in Smart Environments (MANSE’983ages 201-212, Dublin, Ireland, December
1999. Springer-Verlag.

[6] Matthew B. Dwyer, George S. Avrunin, and James C. Corlfetoperty specification patterns for
finite-state verification. IfProc. 2nd Workshop on Formal Methods in Software Practidd $iP-

98), pages 7-15, New York, 1998. ACM Press.

[7] Michigan exXtreme Programming Enthusiasts (MXPE). Erte programming: A gentle introduc-

tion. http://extremeprogramming.org.
[8] Babel group at TU Madrid. The slam website. http://Imfi.upm.es/slam.

[9] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, aratdd A.A. Sanvido. Extreme model
checking. InProceedings of the Int. Symposium on Verification: Theory Rractice Lecture

Notes in Computer Science, Springer-Verlag, 2003.

[10] A. Herranz and J.J. Moreno-Navarro. Formal extremel @xtremely formal) programming. In
Michele Marchesi and Giancarlo Succi, editodsh International Conference on Extreme Pro-
gramming and Agile Processes in Software Engineering, Xd32umber 2675 in LNCS, pages
88-96, Genova, Italy, May 2003.

16

[11] A. Herranz and J.J. Moreno-Navarro. Rapid prototypmng incremental evolution using SLAM.
In 14th IEEE International Workshop on Rapid System PrototypRSP 2003)San Diego, Cali-
fornia, USA, June 2003.

[12] Gerhard J. Holzmanrhe SPIN Model Checker: Primer and Reference ManAdbison Wesley,
Boston, MA, September 2003.

[13] MIT. Project OXYGEN - pervasive human centered commpgitihttp://oxygen.lcs.mit.edu, 2003.
[14] Dennis Oddoux. LTL 2 BA: Buchi automata from LTL. httfi#fa.jussieu.fr/"oddoux/ItI2ba.
[15] University of Colorado. Adaptive Home. http://cs.ocrddo.edu/"mozer/nnh.

[16] Stephen Peters and Howie Shrobe. Using semantic nietvior knowledge representation in an
intelligent environment. IiPerCom '03: 1st Annual IEEE International Conference onvasive

Computing and Communicationst. Worth, TX, USA, March 2003. IEEE.

[17] K. Shimizu and D. Dill. Deriving a simulation input geraor and a coverage metric from a formal

speci cation, 2002.

[18] Kanna Shimizu, David L. Dill, and Alan J. Hu. Monitor$ed formal specification of PCI. In
Formal Methods in Computer-Aided Desjgrages 335—-353, 2000.

[19] Rachel L. Smith, George S. Avrunin, Lori A. Clarke, anddn J. Osterweil. Propel: an approach
supporting property elucidation. roceedings of the 24th international conference on Seéwa

engineeringpages 11-21. ACM Press, 2002.

[20] B. Steffen, T. Margaria, and M. von der Beeck. Automaiiathesis of linear process models from

temporal constraints: An incremental approach, 1997.
[21] Cisco Systems. Internet home. http://cisco.com/Warplic/3/uk/ihome, 2000.

[22] Laurie Williams. The XP programmer - the few minutesgnammerlEEE Software20(3):16—20,
May/June 2003.

[23] William A. Wood and William L. Kleb. Exploring XP for seintific research.IEEE Software
20(3):30-36, May/June 2003.

17

