

F E R M A T
 Formal Engineering Research using

Methods, Abstractions and Transformations

Technical Report No: 2004-22

Abstract -- Reflection is an increasingly
important feature in software systems as
evidenced by introduction of datatype
reflection abilities in Java, RTTI runtime type
information reflection package for C++, and
reflection service in .NET environment.
Since systems being designed today are
supposed to self-configure, self-heal and
make a lot more intelligent decisions about
itself, including versioning, fault-repair etc.,
reflection, and introspection are important.
System Level Design (SLDs) languages such
as SystemC are used for modeling
software/hardware systems, validating such
models, measuring performance, visualizing
various aspects for debugging etc. Therefore,
introspection and/or reflection capabilities for
SystemC and other SLDs can be of great
use, for automated reconfiguration for fast
design alternatives exploration, automated
test generation and coverage analysis, for
visualization of signal activities, hot-spots
analysis and so on. In this paper, we
describe in detail how certain public domain
XML based tools may be used to provide
structural reflection for SystemC, and how to
enhance this reflection into a service, which
can also interact with the SystemC models
under simulation to reflect useful runtime
information as well. Ability for SystemC to
query such reflection renders introspection
feature to SystemC. We show through some
application examples the utility of SystemC
reflection and introspection.

I
ntrospective-SystemC: Reflection
and Introspection in System Level

Design
Hiren D. Patel, Deepak A. Mathaikutty,
David Berner and Sandeep K. Shukla

{ hiren, damathai, shukla}@vt.edu,

david.berner@irisa.fr

mailto:shukla%7D@vt.edu

Contents

1 Introduction 3
1.1 Organization .4

2 Background & Related Work 4
2.1 Reflection and Introspection .4
2.2 Existing tools for structural reflection5
2.3 ESys.NET Framework .5
2.4 BALBOA Framework . 5
2.5 Java, C# .NET Framework, C++ RTTI6
2.6 Doxygen, XML, Apache’s Xerces-C++6

3 Main Contributions 7

4 Reflection Provider 7
4.1 Introspection in SystemC .7

5 Clients Using Reflection 12
5.1 Testbench Generator .12

5.1.1 Testbench generation Example13
5.2 d-VCD .13

5.2.1 Runtime Runlist Information16

6 Conclusion 16

List of Figures

1 Design Flow for Reflection Provider8
2 Examples of class declarations8
3 Doxygen XML Representation forsc in 9
4 Class diagram showing data structure12
5 Code snippets for generated testbenchs14
6 d-VCD Output .15

1

Introspective-SystemC: Reflection and
Introspection in System Level Design

Hiren Patel, Deepak Mathaikutty, David Berner and Sandeep Shukla
{hiren,mathaikutty,shukla}@vt.edu

Center for Embedded Systems in Critical Applications (CESCA),

Virginia Polytechnic Institute and State University, Blacksburg.

{david.berner@irisa.fr}
Inria - Irisa Campus de Beaulieu 35042 Rennes, France.

January 18, 2005

Abstract
Reflection is an increasingly important feature in software systems as ev-

idenced by introduction of datatype reflection abilities in Java, RTTI runtime
type information reflection package for C++, and reflection service in .NET
environment. Since systems being designed today are supposed to self-
configure, self-heal and make a lot more intelligent decisions about itself,
including versioning, fault-repair etc., reflection, and introspection are im-
portant. System Level Design (SLDs) languages such as SystemC are used
for modeling software/hardware systems, validating such models, measur-
ing performance, visualizing various aspects for debugging etc. Therefore,
introspection and/or reflection capabilities for SystemC and other SLDs can
be of great use, for automated reconfiguration for fast design alternatives ex-
ploration, automated test generation and coverage analysis, for visualization
of signal activities, hot-spots analysis and so on. In this paper, we describe in
detail how certain public domain XML based tools may be used to provide
structural reflection for SystemC, and how to enhance this reflection into a
service, which can also interact with the SystemC models under simulation
to reflect useful runtime information as well. Ability for SystemC to query
such reflection renders introspection feature to SystemC. We show through
some application examples the utility of SystemC reflection and introspec-
tion.

2

1 Introduction

The rising complexity of embedded system design and a widening of the produc-
tivity gap have raised the importance of System Level Design (SLD)s languages
and frameworks. In recent years, we have seen SLDs such as SystemC, SpecC
[8, 10] in efforts to raise the level of abstraction in hardware description languages.
These SLDs assist designers in modeling, simulation, validation and verification
of complex designs. However, the high complexity and heterogeneity of designs
make it difficult for embedded system designers to meet the time-to-market. De-
signers require improved methodologies for verification and validation and tools
for debugging and visualization for easier model building to mitigate this produc-
tivity crisis. We propose the addition of reflection and introspection capabilities
in SLDs to further facilitate a realm of tools and methodologies for easier model
building, model visualization, model execution analysis, automated test genera-
tion, improved debugging, etc.

Though the idea of reflection and introspection (R-I) is not common in SLDs
as it is in some programming languages such as Java, C++ RTTI [11] and C# or
other variants using the .NET framework, we show that it is a very useful one for
SLDs. Previously, the BALBOA framework [2] took advantage of the R-I concept
to facilitate IP reuse and component integration for SystemC models. We also se-
lect SystemC as our SLD to illustrate the concepts, because SystemC emerged as
an open-source hardware description language providing free modeling and sim-
ulation libraries and there is significant industrial momentum in making SystemC
successful. The open-source nature allows users to experiment, alter and enhance
existing SystemC. Unfortunately, due to the unmanaged C++ implementation of
SystemC and rudimentary reflection capability of RTTI, it is difficult to use R-
I functionalities without implementing additional libraries and infrastructures to
support R-I for SystemC.

Unlike other technologies used in frameworks that require reflection in Sys-
temC such as BALBOA [2] and ESys.NET [5]; our approach to reflection uses
a suit of open-source technologies consisting of Doxygen [3], Apache’s Xerces-
C++ XML [13], in combination with a C++ library for introspection to complete a
SystemCReflection Provider (RP). We also do not require any interface descrip-
tion language for entering meta-data. Our approach is based on pre-processing
SystemC models through our tools. A Reflection Provider provides R-I capabili-
ties for SystemC. To show the benefits of having R-I in SLDs we implement two
clients that use the RP. These two clients serve only as examples of using the RP,
and they are the Testbench Generator and the dynamic-Value Change Dump (d-

3

VCD) clients. In addition to a unique solution for R-I, we provide structural and
runtime reflection as two subclasses of reflection. Most reflection tools for Sys-
temC such as [2] and [9] only expose structural information of the model, such
as the number of ports, their types, bitwdiths, and netlist. Our approach not only
allows structural reflection, but it also allows the clients to obtain runtime infor-
mation of the model such as the d-VCD, number of invocations of a particular
entry function, processes on a runlist and so on.

In this paper, we provide details on our approach to R-I in SystemC and de-
scribe two clients that use the RP to assist in better tool development. We show
the benefits and importance of having R-I capabilities in SLDs via this paper.

1.1 Organization

In Section 3 we discuss related work with R-I along with the technologies we
employ in endowing SystemC with R-I. We discuss the main contributions of this
work in Section 4. Section 5 then describes the clients that use the RP followed
by an example and finally concluding remarks and future work in Section 6.

2 Background & Related Work

In this section we define reflection and introspection followed by descriptions of
some frameworks and languages that provide R-I along with the open-source tools
that we employ in deriving our solution for R-I.

2.1 Reflection and Introspection

Introspectionis the ability of an executable system to query internal descriptions
of itself through somereflectivemechanism. The reflection mechanism exposes
the structural and runtime characteristics of the system and stores it in a data
structure. We call data stored in this data structuremeta-datain this paper. This
data structure is used to query the requested internal characteristics. The two sub-
categories of the reflection meta-data are structural and runtime. Structural refle-
ction refers to descriptions of the structure of a system. For SystemC, structural
reflection implies module name, port types and names, signal types and names,
bitwidths, netlist and hierarchy information. On the other hand runtime reflection
exposes information such as the number of invocations of a particular process, the
number of events generated for a particular module and so on. An infrastructure

4

that provides for R-I (either structural or runtime reflection) is what we term an
RP.

2.2 Existing tools for structural reflection

Several tools may be used for implementing structural reflection in SystemC.
Some of them are SystemPerl [9], EDG [4], or C++ as in the BALBOA frame-
work [2] and ESys.NET [5]. However, each of these approaches have their own
drawbacks. For instance, SystemPerl requires the user to add certain hints into the
source file and although it yields all SystemC structural information, it does not
handle all C++ constructs. EDG is a commercial front-end parser for C/C++ that
parses C/C++ into a data structure, which can then be used to interpret SystemC
constructs. However, interpretation of SystemC constructs is a complex and time
consuming task, plus EDG is not to be freely used in public domain. BALBOA
and ESys.NET implement their own reflection mechanism in C++ which again
only handle a small subset of the SystemC language. As for runtime reflection,
to our knowledge, there is no framework that exposes runtime characteristics of
SystemC models.

2.3 ESys.NET Framework

ESys.NET [5] uses an interesting idea where they implement a composite de-
sign pattern for datatypes into the original source code. Their work is inspired
by the .NET framework’s reflection mechanism. ESys.NET enhances SystemC’s
datatype library by implementing the design pattern with additional C++ classes.
This altered datatype library introduces member functions that provide introspec-
tion capabilities for the particular datatypes. However, this requires altering the
datatype library and altering the original source code to extract structural infor-
mation.

2.4 BALBOA Framework

The BALBOA [2] framework describes a framework for component composition,
but in order to accomplish that, they required R-I capability of their components.
They also discuss some introspection mechanisms and whether it is better to im-
plement R-I at a meta-layer or within the language itself. We limit our discussion
to only the approach used to provide R-I in BALBOA.

5

BALBOA uses their BIDL (BALBOA interface description language) to de-
scribe components, very similar to CORBA IDLs [7]. Originally IDLs provide
the system with type information, but BALBOA extends this further by provid-
ing structural information about the component such as ports, port sizes, number
of processes, etc. This information is stored at a meta-layer (a data structure
representing the reflected characteristics). BALBOA forces system designers to
enter meta-data through BIDL which is inconvenient. Our method only needs
pre-processing of SystemC models.

A drawback of this framework is that the BIDL had to be implemented. Fur-
thermore, the designer writes the BIDL for specifying the reflected structure infor-
mation which can be retrieved automatically from SystemC source. Furthermore,
runtime reflection was not done in BALBOA.

2.5 Java, C# .NET Framework, C++ RTTI

Here, we discuss some existing languages and frameworks that use the R-I capa-
bilities. They are Java, C# and the .NET framework and C++ RTTI. Java’s reflect-
ion packagejava.lang.reflect and .NET’s reflection librarySystem.R-
eflection are excellent examples of existing R-I concept implementations.
Both of these supply the programmer with similar features such as the type of
an object, member functions and data members of the class. They also follow a
similar technique in providing R-I, so we take the C# language with .NET frame-
work as an example and discuss in brief their approach. C#’s compiler stores class
characteristics such as attributes during compilation as meta-data. A data structure
reads the meta-data information and allows queries through theSystem.Ref-
lection library. In this R-I infrastructure, the compiler performs the reflection
and the data structure provides mechanisms for introspection.

C++’s runtime type identification (RTTI) is a mechanism for retrieving object
types during execution of the program. Some of the RTTI facilities could be used
to implement R-I, but RTTI in general is limited in that it is difficult to extract all
necessary structural SystemC information by simply using RTTI. Furthermore,
RTTI requires adding RTTI-specific code within either the model, or the SystemC
source and RTTI is known to significantly degrade performance.

2.6 Doxygen, XML, Apache’s Xerces-C++

Two main technologies we employ in our solution for R-I for SystemC are Doxy-
gen and XML. Doxygen [3] is a documentation system primarily for C/C++, but

6

has extensions for other languages. Since SystemC is simply a library of C++
classes, it is ideal to use Doxygen’s parsing of C/C++ structures and constructs
to generate XML representations of the model. In essence Doxygen does most
of the difficult work in tagging constructs and also documenting the source code
in a well-formed XML. By using XML parsers from Apache’s Xerces-C++ we
can parse the Doxygen XML output files and obtain any information about the
original C/C++/SystemC source.

3 Main Contributions

Our main contributions in this paper are to show the importance and possibili-
ties from implementing a R-I architecture in SLDs, which we illustrate through
SystemC. The main contributions are:

• Show the use of public domain tools, Doxygen, XML and Xerces-C++ for
structural reflection of SystemC models, thus avoiding using front-end pars-
ing tools such as EDG.

• Exploit the open-source nature of SystemC to perform runtime reflection.

• Utilize the RP in a Testbench Generator.

• Utilize the RP in a d-VCD that displays value changes “as they happen”;
hence the dynamic value change dump.

4 Reflection Provider

Here, we present details on the infrastructure for reflection and introspection. We
only provide small code snippets to present our approach and the concept of using
Doxygen, XML, Xerces-C++, and C++ data structure to complete the RP.

4.1 Introspection in SystemC

Doxygen pre-processing: Using Doxygen has the immediate benefit of C/C++
parsing and its corresponding XML representations. However, Doxygen requires
declaration of all classes for them to be recognized. Since all SystemC constructs
are either, global functions, classes or macros, it is necessary to direct Doxygen
to their declarations. For example, when Doxygen executes on just the SystemC

7

SystemC
Model

Doxygen XML Parser

SystemC DTD

ASLD
Generation

Data
Structure

Phase 1 Phase 2

Figure 1: Design Flow for Reflection Provider

model then declarations such assc in are not tagged, since it has no knowledge
of the classsc in . The immediate alternative is to process the entire SystemC
source along with the model, but this is very inconvenient when only interested
in reflecting characteristics of the SystemC model. However, Doxygen does not
perform complete C/C++ compilation and grammar check and thus, it can poten-
tially document incorrect C/C++ programs. We leverage this, by indicating which
particular classes need to be tagged, by simply adding the class definition in a file
that is included during processing. There are only a limited number of classes that
are of interest and they can easily be declared such that Doxygen recognizes them.
As an example we describe how we force Doxygen to tag thesc in , sc out ,
sc int andsc uint declarations. We include this description file everytime
we perform our pre-processing such that Doxygen recognizes the declared ports
and datatypes as classes. A segment of the file is shown in Figure 2, which shows
declaration for input and output ports along with SystemC integer and SystemC
unsigned integer datatypes.

/ * ! SystemC port classes ! * /
template<class T> class sc_in { };
template<class T> class sc_out { };

/ * ! SystemC datatype classes ! * /
template<class T> class sc_int { };
template<class T> class sc_uint { };

Figure 2: Examples of class declarations

The resulting XML for one code line is shown in Figure 3. Doxygen it-
self also has some limitations though and it cannot completely tag all the con-
structs of SystemC without explicitly altering the source code, which we avoid

8

doing. For example, theSC MODULE(arg) macro defines a class specified
by the argumentarg . Since we do not include all SystemC files in the pro-
cessing, Doxygen does not recognize this macro when we want it to recognize
it as a class declaration for classarg . However, Doxygen allows for macro
expansions during pre-processing. Hence, we insert a pre-processor macro as:
SC MODULE(arg)=class arg: public sc module that allows Doxy-
gen to recognizearg as a class derived from classsc module . We define the
pre-processor macro expansions in the Doxygen configuration file where the user
indicates which files describe the SystemC model, where the XML output should
be saved, what macros need to be run, etc. We provide a configuration file with the
pre-processor macros defined such that the user only has to point to the directory
with the SystemC model. More information regarding the Doxygen configuration
is available at [3].

<memberdef kind="variable" id="classfir_1firr0">
 <type>
 <ref refid="classsc__in" kindref="compound">sc_in<ref> <bool>
 </type>
 <definition>sc_in<bool> fir::reset</definition>
 <name>reset</name>
</memberdef>

<memberdef kind="variable" id="classfir_1firr5">
 <type>
 <ref refid="classsc__out" kindref="compound">sc_out</ref>
 <<ref refid="classsc__int" kindref="compound">sc_int</ref> <16> >
 </type>
 <definition>sc_out<sc_int<16> > fir::result</definition>
 <name>result</name>
</memberdef>

SC_MODULE(fir)
{
 sc_in<bool> reset;
 sc_in<bool> input_valid;
 sc_in<int> sample;
 sc_out<bool> output_data_ready;
 sc_out<sc_int<16> > result;
 sc_in <bool> CLK;

 SC_CTOR(fir)
 {
 SC_CTHREAD(entry,CLK.pos());
 }

void entry();
};

SYSTEMC MODULE

DOXYGEN OUTPUT

<module type = "SC_MODULE" name = "fir" >
 <inport type = "bool" name = "reset" />
 <inport type = "bool" name = "input_valid" />
 <inport type = "int" name = "sample" />
 <outport type = "bool" name = "output_data_ready" />
 <outport type = "int" bitwidth = “16” name = "result" />
 <inport type = "bool" name = "CLK" />

<constructorof modulename = "fir" >
<process type = “SC_CTHREAD" name = "entry" />
<sensitivitylist name = “CLK” edge = “positive” />

</constructorof>
</module>

ASLD

Figure 3: Doxygen XML Representation forsc in

Even through macro preprocessing and class declarations, some SystemC con-
structs are not recognized without the original SystemC source code. However,
the well-formed XML output allows us to use XML parsers to extract the untagged
information. We employ Xerces-C++ XML parsers to parse the Doxygen XML
output, but we do not present the source code here as it is simply a programming

9

exercise, and point the readers at [6] for the source code.
XML Parsers: Using Doxygen and XML parsers we reflect the following struc-
tural characteristics of the SystemC model: port names, types and widths, signal
names, types and widths, module names and processes in modules and their en-
try functions. We reflect the sensitivity list of each module and we also reflect
the netlist describing the connections including structural hierarchy of the model.
We represent this reflected information in an Abstract System Level Description
(ASLD) XML file. The ASLD validates against a Document Type Definition
(DTD) which defines the legal building blocks of the ASLD that represents the
structural information of a SystemC model. For example, some constraints that
the DTD enforces are that two ports of module should have distinct names or all
modules within a model should be unique, which verifies that the ASLD correctly
represents an executable SystemC model. The main entities of the ASLD are
shown in Listing 1.
ASLD: In Listing 1, the topmostmodelelement corresponds to a SystemC model
with multiple modules. Eachmoduleelement acts as a container for the following:
input ports, output ports, inout ports, signals and submodules. Eachsubmodule
in a moduleelement is the instantiation of a module within another module. This
way the ASLD embeds the structural hierarchy in the SystemC model and allows
the introspective architecture to infer the toplevel module. Thesubmoduleis de-
fined similar to amodulewith an additional attribute that is the instance name of
the submodule. Thesignal element with its name, type and bitwidth attributes
represents a signal in a module. Preserving hierarchy information is very impor-
tant for correct structural representation. The elementinport represents an input
port for a module with respect to its type, bit width and name. Entitiesoutport
and inoutport represent the output and input-output port of a module. Line 16
describes theconstructorofelement which contain multiple process elements and
keeps asensitivitylistelement. Theprocesselement defines the entry function of
a module by identifying whether it is an scmethod, scthread or sccthread. The
sensitivitylistelement registers each signal or port and the edge that a module is
sensitive to as atrigger element. Connections between submodules can be found
either in a module or in thesc main. Eachconnection element holds the name of
the local signal, the name of the connected instance and the connected port within
that instance. This is similar to how the information is present in the SystemC
source code and is sufficient to infer the netlist for the internal data structure.

Using our well-defined ASLD, any SystemC model can be translated into an
XML based representation and furthermore models designed in other HDLs such
as VHDL or Verilog can be translated to represent synonymous SystemC models

10

by mapping them to the ASLD. This offers the advantage that given a translation
scheme from say a Verilog design to the ASLD, we can introspect information
about the Verilog model as well.

Listing 1: Main Entities of the DTD
1<! ELEMENT model (module)∗ >
2<! ATTLIST model nameCDATA #REQUIRED>
3

4<! ELEMENT module (i n p o r t | o u t p o r t | i n o u t p o r t | s i g n a l | submodule)∗ >
5<! ATTLIST module nameCDATA #REQUIRED t ype CDATA #REQUIRED>
6

7<! ELEMENT submodule EMPTY>
8<! ATTLIST submodule t ypeCDATA #REQUIRED name CDATA #REQUIRED i n s tancename

CDATA #REQUIRED>
9

10<! ELEMENT s i g n a l EMPTY>
11<! ATTLIST s i g n a l t ype CDATA #REQUIRED b i t w i d t h CDATA #IMPLIED name CDATA #

REQUIRED>
12

13<! ELEMENT i n p o r t EMPTY>
14<! ATTLIST i n p o r t t ype CDATA #REQUIRED b i t w i d t h CDATA #IMPLIED name CDATA #

REQUIRED>
15

16<! ELEMENT c o n s t r u c t o r o f (p r o c e s s∗ | s e n s i t i v i t y l i s t) >
17<! ATTLIST c o n s t r u c t o r o f modulenameCDATA #REQUIRED>
18

19<! ELEMENT p r o c e s s EMPTY>
20<! ATTLIST p r o c e s s t ypeCDATA #REQUIRED name CDATA #REQUIRED>
21

22<! ELEMENT s e n s i t i v i t y l i s t (t r i g g e r)∗ >
23

24<! ELEMENT t r i g g e r EMPTY>
25<! ATTLIST t r i g g e r name CDATA #REQUIRED edge CDATA #REQUIRED>
26

27<! ELEMENT c o n n e c t i o n EMPTY>
28<! ATTLIST c o n n e c t i o n i n s t a n c eCDATA #REQUIRED member CDATA #REQUIRED

l o c a l s i g n a l CDATA #REQUIRED>

Data structure: The ASLD file serves as an information base for our reflection
capabilities. We create an internal data structure that reads in this information,
enhances it and makes it easily accessible. The class diagram in Figure 4 gives
an overview of the data structure. Thetopmodulerepresents the toplevel module
from where we can navigate through the whole application. It holds a list of
module instances and a list of connections. Each connection has one read port and
one or more write ports. The whole data structure is modeled quite close to the
actual structure of SystemC source code. All information about ports and signals
and connections are in the module structure and only replicated once. Each time
a module is instantiate, however amoduleinstanceis created that holds a pointer
to its corresponding module.

11

The information present in the ASLD and the data structure does not contain
any behavioral details about the SystemC model at this time, it merely gives a
control perspective of the system. It makes any control flow analysis and opti-
mizations on the underlying SystemC very accessible.

MODULE

PROCESSINPORT SIGNALOUTPORT

PORT

*

SENSITIVITY
LIST

INOUTPORT

TOPLEVEL

*** ***

MODEL

*

1

1

CONNECTION *
*

*
1MODULE

INSTANCE
MODULE

REGISTRY

Figure 4: Class diagram showing data structure

5 Clients Using Reflection

5.1 Testbench Generator

We develop a Testbench Generator client that interacts with the RP to support
automated test generation. The test generation client is built using the SystemC
Verification (SCV) [8], which is a library of C++ classes, that provide tightly
integrated verification capabilities within SystemC. The Testbench Generator in-
teracts with the RP by instantiating an object of the RP and invoking the respective
API calls to access the structural information pertaining to test generation. The
generator takes as input a SystemC model and invokes the respective API call on
the reflection object that creates the corresponding ASLD for the SystemC model.
Then it invokes the API call for initialization of the data structure and enabling the
introspective capabilities of the reflection object. This Testbench Generator uses
these introspective capabilities to extract information such as the type, bitwidth of
ports and signals to generate tests for the SystemC model. The generator also has
the abilities to generate testbenchs for pre-specified ports or signals of a SystemC

12

model. The client generates different tests based on the mode in which it is set.
The different mode can be set during initialization of the client. TheunconstRand,
simpleRandanddistRandare the currently defined modes.

The test generator can create constrained and unconstrained randomized test-
benchs. In theunconstRandmode, the client generates unconstrained randomized
tests using objects of thescvsmartptr<T> class of SCV, which are containers
for objects of type T. In thesimpleRandmode constrained randomized testbenchs
are created. These testbenchs issueKeepout andKeeponly commands to define
the legal range of values given in the data file. Similarly in thedistRandmode,
SCV bag objects are used in testbenchs providing which takes a data file as input
with the values and their probability.

5.1.1 Testbench generation Example

We briefly describe the testbenchs generated using the FIR example from Sys-
temC distribution. In particular, we set focus on the computation block of the
FIR. We present Figure 5 that shows three testbenches using theunconstRand,
simpleRandanddistRandmodes. TheunconstRandgenerates unconstrained ran-
domized testbenchs, thesimpleRandconstrain the randomization usingkeepout
andkeeponlyconstructs with legal ranges specified from an input data file and the
distRanddefinesSCVbagsthat give a probabilistic distribution for the random-
ization. Once, the automated testbench generated, it is integrated and compiled
to test the FIR block. The integration is performed manually by defining the ap-
propriate interface between the generated testbench and the FIR block. Figure 5
displays snippets of these three modes of operation.

We intend to improve our automated testbench generation capabilities by first
implementing additional clients such as coverage monitors and simulation perfor-
mance monitors to better analyze the SystemC model. These additional clients
will assist the Testbench Generator in making more intelligent and concentrated
testbenchs.

5.2 d-VCD

Implementing runtime reflection mandates alterations to the existing SystemC
source. This is unavoidable if runtime information has to be exposed for Sys-
temC and we justify this change by having two versions of SystemC. We call our
altered version SystemC-V, which the designer can use for the purpose of verifi-
cation, d-VCD, and debugging of SystemC models. However, for fast simulation

13

/*! Defining an SCV smart pointer !*/

scv_smart_ptr <int> r_sample;

/*! Generating the randomized values !*/

r_sample->next();

/*! Defining simple constraints !*/

scv_smart_ptr <int> r_sample;

/*! Defining the legal ranges !*/

r_sample->keep_only (10,100);
r_sample->keep_out (21, 49);
r_sample->keep_out (61, 89);

/*! Defining weights for the distribution mode !*/

scv_smart_ptr <int> r_sample;

scv_bag<pair<int,int> > d_sample;

/*! Defining the legal ranges !*/

d_sample.add(pair<int, int> (1, 3), 40);
d_sample.add(pair<int, int> (5, 7), 30);

/*! Setting the distribution mode !*/

r_sample->set_mode(d_sample);

Snippet of the testbench in the unconstRand mode

Snippet of the testbench in the simpleRand mode

Snippet of the testbench in the distRand mode

Figure 5: Code snippets for generated testbenchs

the same model can be compiled with the original unaltered version of SystemC
by simply altering the library target in the Makefiles.

The d-VCD client displays signal value changes for a module “as they hap-
pen”. Regular VCD viewers display VCD information from a file generated by
the simulation. However, we enable the d-VCD viewer to update itself as the
signals of a focused module in the SystemC model changes. Every signal value
change for the module in focus communicates with the d-VCD. Likewise, at every
delta cycle we send the process names on the runlist to the d-VCD. Figure 6 shows
a screenshot of a GUI for the VCD using Qt [14]. To enable SystemC-V to ex-
pose this information we altered thesc signal class along with adding an extra
classes. Before discussing brief implementation details it is necessary to under-
stand how we utilize the RP. In order to gain access to the reflected information,
we instantiate an object of classmodule and use it as our introspective mecha-
nism. Member functions are invoked on the instance ofmodule to set the focus
on the appropriate module and to introspect the characteristics of the module as
explained in Section 5.2.

To facilitate SystemC for exposing runtime characteristics, we implement class
fas sc signal info that stores the signal name (sig name), signal type
(sig type) and classification type (sig class) with their respective set and
get member functions. SystemC has three class representations forsc signal ,
where the first one is of templates typeT, the second is of typebool and the third
is of typesc logic . Each of these classes inherit thefas sc signal info
class minimizing changes to the original source. In fact, the only changes in the
original source are in the constructor and theupdate() function. We require the

14

user to use the explicit constructor of thesc signal class such that the name of
the signal variable is the same as the parameter specified in the constructor. This
is necessary such that an object ofsc signal concurs with the introspected
information from the RP. We also provide a PERL script that automatically does
this. Theupdate() function is responsible for generating SystemC events when
there is a change in the signal value and an ideal place to transmit the data to the
d-VCD client. So, if the signal type is a SystemC type then theto string()
converts to astring but if it is classified as a C++ type then it is converted using
stringstream conversions.

The explicit constructors invokeclassify type() which classifies the
signal into either a SystemC type or a C++ type. We use the classification to con-
vert all C++ and SystemC types values to astring type. This is such that mul-
tiple VCD viewers can easily interface with the values returned from SystemC-V
and they need not be aware of language specific datatypes. Since all SystemC
datatypes have ato string() member function, it is easy to return the string
equivalent for the value. However, for C++ datatypes we employ a work around
usingstringstream conversion to return the string equivalent. Now, we are
successfully able to translate any native C++ and SystemC datatypes to their string
equivalent. However, the compilation fails when a SystemC model uses signals of
C++ and SystemC types together because for C++ datatypes the compiler cannot
find a to string() function. An immediate solution to this involves imple-
menting a templated container class for the templated variables insc signal
class such that the container class has a defined functionto string() that al-
lows correct compilation. We add classcontainerT <T> as a container class
and replace variable instances of typeT to containerT <T> to circumvent the
compilation problem. We interface the runtime VCD with the Qt VCD viewer
implemented by us, shown in Figure 6.

Figure 6: d-VCD Output

15

5.2.1 Runtime Runlist Information

d-VCD is a good example of runtime reflection in SystemC and we extend it fur-
ther by exposing runlist information at runtime as another example of runtime
reflection. Being able to see the processes on the process runlists is a significant
advantage during debugging and we provide this capability by altering the Sys-
temCsc simcontext class. Figure 6 also shows the output for the processes
on the runlist. Exposing the process name to the d-VCD client itself does not
require the Reflection Provider since the process names are available in SystemC
sc module class via thename() member function. However, using the RP we
provide the user with more concentrated visuals of model execution by enabling
the user to specify which particular module’s processes should be displayed. This
requires querying the RP for the name of the modules in focus and only returning
the names of the processes that are contained within those modules. Implementing
this capability required stepping through SystemC runlist queues and monitoring
whether they match the modules of interest and transmitting the name to the d-
VCD client.

6 Conclusion

We present a methodology where we employ the use of public-domain tools such
as Doxygen and Apache’s Xerces-C++ to present introspective capabilities in Sys-
temC. We describe our approach in detail and also present two clients that utilize
the R-I capabilities implemented in SystemC. Clients such as the Testbench Gen-
erator primarily use the structural reflection information to generate automated
testbenchs, but it is essential to perform runtime reflection to aid in better de-
bugging tools such as the d-VCD. We intend to use runtime reflection to facil-
itate performance metric calculation further allowing us to locate time consum-
ing hotspots. Overall, R-I in SystemC opens up possibilities for a wide range of
tools from integrated development environments to better visualization tools, GUI
based SystemC modeling, validation and verification.

Our future work involves providing more clients such as coverage monitoring
clients that interact with the Testbench Generator client to refine the testbenchs
and performance metric clients that analyze hotspots in the model. We are inves-
tigating the possibility of using Adaptive Communication Environment and The
ACE ORB [1, 12] as middleware for the interactions between the RP and clients.

16

References

[1] ACE. Adaptive Communication Environment.
http://www.cs.wustl.edu/ schmidt/ACE.html.

[2] F. Doucet, S. Shukla, and R. Gupta. Introspection in System-Level Language Frame-
works: Meta-level vs. Integrated. InDesign and Test Automation in Europe, 2003.

[3] Doxygen Team. Doxygen. http://www.stack.nl/ dimitri/doxygen/.

[4] Edison Group. Edison C++ Front-End. http://www.edg.com.

[5] J. Lapalme, E. M. Aboulhamid, G. Nicolescu, L. Charest, F. R. Boyer, J. P. David,
and G. Bois. .NET Framework – A Solution for the Next Generation Tools for
System-Level Modeling and Simulation. InDesign and Test Automation in Europe,
2003.

[6] D. A. Mathaikutty, D. Berner, H. D. Patel, and S. K. Shukla. FERMAT’s SystemC
Parser. http://systemcxml.sourceforge.net, 2004.

[7] OMG. OMG CORBA. http://www.corba.org/.

[8] OSCI. SystemC and SystemC Verification. Website: http://www.systemc.org.

[9] W. Snyder. SystemPerl. http://www.veripool.com/systemperl.html.

[10] SPECC Team. SpecC. Website: http://www.ics.uci.edu/specc/.

[11] B. Stroustroup.The C++ Programming Language. Addison-Wesley, 2003.

[12] TAO. Real-time CORBA with TAO (The ACE ORB).
http://www.cs.wustl.edu/ schmidt/TAO.html.

[13] The Apache XML Project. Xerces C++ Parser. http://xml.apache.org/xerces-c/.

[14] Troll Tech. Qt. Website: http://troll.no.

17

