;
i
i

=)

100z 21504 v =1

et
o
(=p

PIERRE DE FERMAT 16011665

" _A 2
na pas u..f. .5(.«, ZZ'YO?I POM?“ es 6?‘2.’:26’?3 7

Abstract -- With increasing clock frequencies
in the gigahertz ranges, the distance signals
travel during one clock cycle decreases, making
a synchronous clock routing throughout the chip
impossible. Therefore, interconnect latency
needs to be tolerated, and in IP based design
various synchronous logic blocks need to be
connected via long interconnects that have
communication delays of multiple clock cycles.
Sometimes two communicating IPs also belong
to different clock domains, making their
interaction difficult to implement. Latency
insensitive protocols were introduced for cases
when the interconnect delay was the main
concern but the IPs were under same clock
domain. Here we generalize the issue of solving
the problem of long interconnects in between
IPs for a single-clock domain as well as for a
multi-clock domain. We also use a formal
verification strategy for making sure that as we
gradually refine our protocol, we do not become
functionally inequivalent to the original
synchronous reference design.

A A A A & & & A & & & & & & &5 &

FER

Technical Report No: 2005-02

Presentation and Formal Verification

of a Family of Protocols for Latency

MAT

Formal Engineering Research using
Methods, Abstractions and Transformations

Insensitive Design

Syed Suhaib, David Berner, Deepak Mathaikutty,

Jean-Pierre Talpin, Sandeep Shukla

{ssuhaib,damathai,shukla}@vt.edu
{david.berner,talpin}@irisa.fr

Step 1

Collection of synchronously
communicating processes

Step 2 I

Floor planning and
interconnect routing

° IP required
?
Yes

Encapsulation of all modules
with block of control logic

Step 4

Floor planning and
interconnect routing

Step 5

Refinement of long
interconnects

Step 6

Floor planning and
interconnect routing

Any Long
In!ercnnnacts

t————Done

ma

[[ﬂlﬂ]] Tech

Presentation and Formal Verification of a Family of
Protocols for Latency Insensitive Design

Syed Suhaib, David Berner, Deepak Mathaikutty,
Jean-Pierre Talpin, Sandeep Kumar Shukla

Virgina Tech, USA
INRIA, France

{ssuhai b, danat hai , shukl a}@t . edu
{dberner, tal pint@risa.fr

Contents

1 Introduction 2
1.1 Main Contributions 3

2 Related Work 3

3 Preliminary Definitions & Notations 5
3.1 SPIN. . . e 6

4 Protocol Details and Implementation 7
4.1 Carloni’'s Latency Insensitive Protocol 7

5 Our Approach 10
5.1 Eliminating Relay Stations 10
52 Multi-Clock 15

6 Verification of Protocols 18

7 Conclusion and Future Work 19

List of Figures

~No o~ wWDNPR

EqualizerExample o oL 8
LI system as proposed by Carloni 9
Refinement 12
LIsystemwithBridge 13
LI and Synchronousmodel 14
Multi-clock LI Implementation 17

Latency Equivalence Checking of Synchronous and LI System 18

List of Tables

Abstract

With increasing clock frequencies in the gigahertz rangks,distance sig-
nals travel during one clock cycle decreases, making a sgncus clock routing
throughout the chip impossible. Therefore, interconnatdricy needs to be tol-
erated, and in IP based design various synchronous logicksimeed to be con-
nected via long interconnects that have communicationydetd multiple clock
cycles. Sometimes two communicating IPs also belong &retiff clock domains,
making their interaction difficult to implement. Latencgensitive protocols were
introduced for cases when the interconnect delay was the sw@icern but the
IPs were under same clock domain. Here we generalize the isssolving the
problem of long interconnects in between IPs for a singtekldomain as well
as for a multi-clock domain. We also use a formal verificastnategy for mak-
ing sure that as we gradually refine our protocol, we do notdmee functionally

inequivalent to the original synchronous reference design

1 Introduction

In the current System-on-chip(SoC) based design, redunedtb-market de-
mands efficient reuse of complex components. This has ledetadiea of de-
veloping libraries of Intellectual Properties (IP)s or sable components. The
integration of such complex IPs on SoC and communicatiowdat them has
shifted the performance bottleneck of the system from cdatfmn to commu-
nication. With clock frequencies of these IPs in the mudtipigahertz range,
and the interconnection distances staying almost constiéimthe chip size, we
have hit the limit, where the signal propagation distancenduone clock cycle
is shorter than the longest wire. The solution is to distislyshort interconnects
from long interconnects, and use the long interconnectegaely on low traffic
inter-component communication. Intelligent repeater2[13] on their intercon-
nects make sure that no value sent through them are lostappi®ach is known
aslLatency Insensitive desigiThe idea is to create a design from a specification
without assuming any latency in the interconnects, suchthigaresulting design
is latency equivalent to the specification. Informallyelaty equivalence means
that given same input signals, the output signals have tie sadering of events
except for interspersed absent events. Formal definititm®follows in the later
sections.

While this is solving the fundamental problem, there ardkistues that make
the application unsatisfactory or at least inconvenieitthese repeaters or re-
lay stations are additional components that have to be glanethe floor plan,
and consequently require changes in the original placearahtouting. Several
iterations of a lengthy process may be necessary in ordeyaichra state where
all timing constraints are met. (ii) in such a completely @yronous design all
components have to run the same clock frequency. Reusirfgoiglifferent ori-
gins however often imply that these IPs are designed to ruarging frequency
ranges. Furthermore, only a few components have to run Wwihastest clock,

others could run at a much slower clock, while still meetiligheeir performance

constraints.

In this paper, we illustrate a technique with an example tmsow to succes-
sively eliminate these two constraints, reducing overleaded to the designer
in terms of design time, while at the same time leaving thermemoom in their
power budget. In the first step, we show how to get rid of thayrskations, by
putting some small extra intelligence into the componetdrface. In the next
step, we show an extension of these interfaces that allosdimponents to have
different clocks, but are defined rational clock relatioBsth of these improve-
ments can be done systematically, while minimizing chamgélse actual com-
ponent and therefore eliminating additional sources afrerrWe employ formal
verification as our strategy for ensuring that as we graguafine our protocols,
we maintain functional equivalence to the original inteithe latency insensitive

design.
1.1 Main Contributions

The main contributions of this paper are as follows:
e Formal modeling and validation of existing latency inséueiprotocols [3].

New refinement-based approach to single-clock latencyisigee systems.

Formal modeling and validation of our new approach.

New approach to latency insensitive systems for multilckgstems.

Formal modeling and validation of the multi-clock latenagensitive sys-

tem.

2 Related Work

Latency insensitive protocols (LIP) for systems with longerconnection de-
lays (i.e. greater than one clock cycle) were proposed bjoGiaet al [1, 2, 3]

for single-clock SoCs. All processes with long intercorteece encapsulated in a

3

wrapper to derive a process that is latency equivalent ta¢heal process, without
having to modify the internals of the original IP. Relay &ias are added along
the long interconnection wires like repeaters for sucegghdta transfer. They
contain at least two registers and a small control logic. Hsertion of these
relay stations increases the number of elements to routeempuires additional
space on the chip for placement. Once it is determined wiedag stations have
to be added based on the length of the wires, placement atidgai the entire

chip design now including the relay stations have to be red&everal iterations
for placement and routing are needed in order to get a coafigurthat satisfies
all interconnection constraints.

All components of such latency insensitive (LI) designsassumed to oper-
ate with the same clock. Singh and Theobald generalize thleddry for GALS
systems [4]. In their approach, complex FSMs control aluingnd output sig-
nals. The communication network is implemented as an asgnolus system to
connect modules with different clocks. Overall this apgtoa associated with
heavy penalties in terms of implementation costs and padaorce.

Casu and Macchiarulo show how to reduce chip area compar€drtoni’s
approach [5]. They use a smart scheduling algorithm foruhetional block acti-
vation and substitute the relay stations with simple flip$loOne disadvantage of
this approach is that the schedule has to be computed a @nidrilepends on the
computation in the process. If any change is made in any psp@emay result in
change of flow of tokens. In this case, the schedule has todadctdated which
is an expensive procedure.

In our approach, we do not face the problem of implementimgmex FSMs,
asynchronous communication protocols, or scheduling coatipns. Instead we
propose to solve the latency problem without using relatyasta along the wires.
We also generalize the solution for multi-clock systemsfemmunication is
done based on a global/communication clock and the prooésdaces bridge

the global and the local clock to ensure correct functianalf the processes.

We formally model the family of protocols that we propose aedfy them for

latency equivalence with a corresponding synchronougsyst

3 Preliminary Definitions & Notations

LetV be the set of data values and, T be a countable set of tangs. Unless
otherwise specified, in this paper, we assumeN =set of natural numbers. An
eventec V x T is an occurrence of a data value with a particular time stamp.
However in the systems, we consider, a special event caliednt eventenoted
by t may occut. Therefore the set of all events is denoted by E, wheteE and
for all otherec Eec V x T. When ec V x T it e is called arinformative event
A signals is defined to be a sequence of events, often denotetbss---e,- -

(a signal is possibly infinite) wher € E.

For the preliminary definitions, if s is a signal, s[i] dermtheit" event, hence
either s[ile V x T or s[i] = 1. The set of all signals is denoted by S. We also
distinguish from all signals in the system, some speciatll kifisignals, like the
Stall signalsandControl signals A stall signals is a sequence of boolean events,
i.e.,s[i] € Boolx T The set of all stall signals is denoted 8y. A control signal
Sw is a sequence of events frofR W} x T set, i.e.sw € {RW} x T. The set
of all control signals is denoted 8. In our system, IPs are hardware modules
that map input signals to output signals, therefore in thjsgp we refer to them as
processes. A process p is a funct®h— S" where n, m are natural numbers.

In the rest of this section, we define a few terms and notatioaisare used

throughout the paper.

Definition 1 Given two tuples of m and n elemengs, creates a tuple of m+n
elements.

<a17a27"'7an>®<b17b27"'7bm>: <31732,---aan:b1:b2:---abm>

Definition 2 Given two tuples of n events and n signals respectiglgreates a

11t may be caused due to lack of valid data in the producer octimsumer’s request to delay
a transmission

tuple of n signals with the n events appended to the n signals.

<e,6,..,en> P <S,R,...,5>=<eDS,0DR,...,60 DS > wWhere

e @ sy =9’ is a signal such thatjs= e;s;

Definition 3 Let p, and p be two processes where; pS— Sandp: S— S

then po p1(s) =<' is called a composition.

Definition 4 Vecf. ;(exp(i)) = <exp(1),exp(2); -,exp(n)> where, exp(i) is an ex-

pression s.t. exp(K) is a textual replacement of i by k.

Definition 5 Let function¥ : S— S be defined a%; (s) = f(s,1,n) where,

f(s,i+1,n), if sfij=r1
f(s,i,n) =4 i, if (i=n)
gli]® f(s,i+1,n), otherwise

¥ takes a signal as input and outputs a signal dropping aVents, but preserving

all informative events. If s is infinite, then the above daéinichanges slightly.

Definition 6 Latency Equivalence: Two signals sand $ are said to be latency
equivalent, s=e S < 7 (s1) = 7 (). If the output signals of two systems are
latency equivalent given the same input signals, then teygstems are said to be

latency equivalent.
3.1 SPIN

SPIN [6] is a model checker used extensively for formal veatibn of sys-
tems. SPIN is used to trace logical design errors and to cteckonsistency of
the specification. Its basic building blocks include asynobus processes, mes-
sage channels, synchronizing statements, and structatad\e use these basic
blocks to write synchronous models. The communication reedbrough global
variables. Since the processes run asynchronously in S®#Nynchronize the

execution of all processes with a central clock controlieoider to make our

6

model behave like a synchronous system. The execution bf @aoponent de-
pends on a flag set by the clock controller, which is reset bycdmponent at the
end of its execution. After which the clock controller wdis all components to
finish execution before it starts the next cycle. As in a rgachronous system,
the duration of a cycle (i.e. the maximum system frequersgetermined by the

slowest component.

4 Protocol Details and Implementation
4.1 Carloni’'s Latency Insensitive Protocol

In the LI approach of Carloni et al each process is encapiiiata wrapper
(called “shell”) that is forming the interface to other diellLogic blocks called
relay stations are placed along the wires that are longarttteesignal propagation
distance during one clock cycle. These relay stations weripeline blocks to
send data from one shell to another over a long wire. The sedls all incoming
values, filters out empty events, and feeds the process liti nput events.
If any input signal does not have a data available, the psoisestalled until all
input signals are present. When the process completes ¢atigny the shell
writes events to the output wires, but only if the respecativenected component
is accepting events.

We present our LI systems based on this approach. So first we enformal
model of the Carloni LIP (Figure 2). In this implementatioa put all functional-
ity of the wrapper into arqualizerprocess. An equalizer is modeled such that it
reads all the input events from the incoming signals. An ingpeonsidered only
when it is associated with an informative event. The eqeaigzonly forwarding
data when all its input signals provide informative evetftan input signal sends
an absent event in one cycle, the equalizer sends a stadll sigra feedback to all
processes that had sent an informative event and it susgiemnesecution of other
processes. When the process itself is disabled by its eguaii is producing

events at its outputs, therefore causing the componentsebtf wait until it can

7

resume operation. Formal definition of the equalizer isgivelow:

Definition 7 An Equalizer functiore : 8" — (S x $") is defined as:

E(S:I-?'”?s']) =f(81,°"73171717~~,1) Whel‘e,

f(sly"'7$17i17i27"'7in) =
HENCITERY

then

<T,T,...,T> O Vect (exp(])) D f(s, -, s, Vet (exp(j)))
else

Vect, (silij]) © <F,...,F > @ f(s1, -, s, Vect,(ij +1))

exp(j):if (sjij]) = tthen Felse T
exp(j) - if (sjfij]) = Ttheni + Lelse
The function f takes argumentsip, ---,in to index §,s,,- -+, S, to access the respective

events.

Let us consider an example of an equalizer and three prace&sB, C (shown in
Figure 1). Each of the processes connect to the equalizeisigihals{s;, S, s3}-
Also the equalizer outputs stall signatslla, stallg, stallc to the respective pro-
cesses. Let us assume that processes B and C produce inferevents whereas
process A outputs an absent event. In this scenario, thdizeyuaill set stallg

andstallc signals to stall the processes B and C in the next cycle amaibabsent

3» Equalizer | Sop
! s’

!

i

i

i

!

Figure 1. Equalizer Example

8

events ors}, s,, s;. Once it receives an informative event®nit will remove the
stalls that were set and produce the corresponding oufpl¢sequalizer modeled
in the LI implementation also consists of a stall signal gatw that connects to
the main process. An example of this LI approach is shown guiei 2. In the
example, there are two proces$eandQ that are encapsulated in wrappers. A
random generator produces random informative events anuts $eem to the shell
of proces®. The shell reads the data from its inputs and performs somgge
tation and sends an output @via a relay station. In this example, the process
Q simply prints the data it reads and is forwarding it to itspuit The setup is
as follows:EgP andEgQare the equalizers of the corresponding processes. The
global clock is connected to all the processes. There issy @étwo cycles on the
interconnection between sh&lland shelQ. Therefore, one relay station is placed
on the interconnect to permit successful transfer of data foroces® to process

Q. The solid arrows denote the transfer of values where asdatteddlines denote
the transmission of events. Each process has enable sggtalisthe next process
station because if a process is not ready to accept data disable the previous
processes to stop them from producing more tokens. Thidé&skdmechanism

is preventing the usage of infinite buffers. Note that we amsthat processes
considered here are functions and hence deterministicheaydare monotonic as
well [7]

»| Relay
Station

Figure 2. LI system as proposed by Carloni

5 Our Approach
5.1 Eliminating Relay Stations

First step to generalize the original LI approach is to eliaté the need for
relay stations. There are several advantages to this. dfit, we reduce the
number of elements in the system, which simplifies routing)@lacement. Also,
we reduce the process of re-iterating over the routing aackphent after estimat-
ing the actual delays since we do not have to insert new coemsiin between
wires for long interconnections.

The basic idea of our approach is that if a event between twaponents
takes two clock cycles, we only send one value every secarul clycle thereby
adapting the communication speed between components itodisance. An
outgoing interface takes care of this restriction, andssthe sending component
whenever it delivers values too fast.

While this eliminates all relay stations, it however slowsmh the system
significantly due to an increasing number of stalls. We elate this slowdown
by additional communication lines. The number of intercexta needed depend
on the interconnect delay. For example, if there is an iot@mect delay oh
cycles, them interconnects are placed in-between the processes. Natténth
most cases n is in the range of 2 or 3. These additional wirextaa cost, but in
modern processes it is not very expensive to add paralleswinly in rare cases
of very sparse communication does it make sense to use a lémemtation for
more than three cycle distances, since stalling is bountbt down the rest of
the system otherwise.

To ensure that the events are correctly transfers from omeeps to another
through long interconnects, we add extra interconnectatiedbounded by split-
ter on the source and mergeron the sink. The splitter is implemented at the
output of a process, and it transfers events on the corrdspgpmterconnect. The

splitter only puts one event on one of the output intercotsandts are placed

10

on the rest of the signals at a particular time stamp.
Definition 8 n-Splitter# is a process, s.t# (s) = (S;,S), - .-, S,) Where

(s,S,-.-,8,) =h(x::y,n,1) and,

T, ifn=1
g(n) = _
1TOg(h—1), otherwise

- xOg(n—j), ifi=1
fxni,j) =
TOf(x,ni—1,j+1), otherwise

. f(xni,@hyn1), ifi=n
h(x:y,n,i)=
f(x,n,i,1)@h(y,n,i+1), otherwise

Here, s= x:: y means that x is the first event of the signal s and y is reseditinal.

On contrary to the splitter, we implementeergerthat reads the correspond-
ing events from these interconnects based on the placerhewtats by the split-
ter. We fomalize the splitter below and also state the lemoatthe composition
of the splitter and the merger. There is a splitter-mergertmoation for each long

interconnect in our LI implementation and we call this comsifion a bridge.
Definition 9 Mergeras is a process, S.t (s1,S,...,S) =S where

S =0g((XL Y1, X2 5 Y2,..., % 1 Yn), N, 1) and,

) X, ifi=n
f(x:yni) =
f(y,n,i+1), otherwise

f((X1,%2, ..., %n),N,1)D
.. g((y17y27"'7yn)7n71)7 I=n
g((xl--YLXZ--YZa---an--Yn)anJ): .
f((X1,%2, ..., %n),N,1)D
)

a((y1,¥2,...,¥n),n,i+1), otherwise

SI=X12Y1L, =X0Y2, 00 S =Xn Y,

11

Definition 10 If a0 o # (s) =<', then¥ (s) = 7 (§)
proof sketch: From Definition 8, when the n-splitter is given an input sigsa

the n output signals are as follows:

s = et tenat tepn it
s, =1et" ten ot tepny ot L

S = TTest" en; 3T teonat™ t. .

% _ Tn—len.[n—leZn.[n—leSn.[n—l L

From Definition 9, when the merger is given the n output sigmdlthe splitter

(s],s,,...,S,) as input. If the resultant output signal i§ then# (s) = 7 (s”).

Definition 11 A Bridge 3 is single-input, single-output process p, built by se-
quentially composing a Splitter and a Mergex {2(), where gs) =< and $ =
MoH(s).

Shell 1 Process Refinemen t Shell 2

Interconnec t Refinement

Eq | S| Bridge S| | EQ
s P =, 9 Q

e
© ©

Figure 3. Refinement

In definition 12, we define our two-step refinement process feingle-clock

LI composition.

Definition 12 Single Clock LI Composition: Given a single clock systefs
with N synchronous processes, m input signals and n outpmirials, we define a

k-delayed LI composition with the following steps:

12

Step 1 (Process Refinement): Every process s encapsulated into a shell
by sequentially composing them with an equalizer
Step 2 (Interconnect Refinement): Every k-delayed inteciris refined by

introducing a bridge between the source and the sink of ttezdonnect.

The refinement process is shown in Figure 3 with two proceBsa®l Q. s1,S

are inputs to the process sz is a long interconnect that connects prodessdQ

ands is the output of. At the first step, the processes are encapsulated in a shell
which is done by composing each process with an Equalizehemext step, the

long interconnecss is refined with the bridge as described in definition 11.

Definition 13 The shell encapsulation of process P is latency equivatetie

output of Process P for any given input signal.

Proof sketch: Follows from [1] and Definition 7.

Figure 4 shows the structure of this implementation baseéteprevious example
in section 4.1. Each component still has an equalizer fanghets, however on the
output side, long interconnects are connected by the hritige throughput of the

system is exactly the same as the throughput of a systemeléty stations. Let us

oo

L I 7
e [,
- -
- T ! cycle 1
EqP iR % \ delay"
- P \]
\ /
\\ 4

Figure 4. LI system with Bridge

consider two system$1 andln’ as shown in Figure 31 is a synchronous system
with two processe® andQ. P has two input signalss; ands, and an output
signalsy. In I, the interconnect has no latency and hersseand sz are same
signals input to proce<3. Q gives an outpus and another signa, to process>.

M’ is the LI implementation of the synchronous moBelith processe®’ andQ’

13

which are encapsulations BfandQ of N [1]. M’ has a bridge in-between process
P’ andQ’ as defined in definition 11. The signalsidf are connected similar to

systenTl. s; = s; are the input signals to both the systems.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

EqQ

Merger

Input

Figure 5. LI and Synchronous model

Theorem 14 Two systemEl, M’ are latency equivalent.

Proof sketch: We use circular reasoning [8] to show the prove sketch. Ini-
tially, all signals are latency equivalent. When the firdbrmative event enters
the system a$1,s;, the corresponding event at the outputFoindP" are same
assuming that a valid event is presensatinds,. Therefore, from Lemma 13,
¥ (s2) = 7 (s,) after the first informative event is processed by beft’. Also
S = s3in systenT] since they are the same signal, and we know from definition 11
and lemma 10 that (s,) = 7 (s;). Similarly, for processe®, Q/, 7 (s3) = 7 (S3)
at the first informative event. Therefore, at the outpu@', 7 (s4) = 7 (s)) at
the first event. At every!" informative event 0%, S, the value will depend on
thet — 1! event ofsy, 5, which will be same. Therefore, event ens, will always
be the same at" event and hencer (s;) = 7 (s,) will always be true aftet'"
informative events from the input. The same can be said ®othtput ofQ, Q.
Therefore, all the signals will be latency equivalent afterfformative events are

processed. Hence, the two systems are latency equivalent.

14

5.2 Multi-Clock

An LI system as defined by Carloni is still a synchronous systéhere all
components are connected to the same clock and work withathe speed. We
generalize this definition towards a multi-clock implernain where we allow
components with different clocks connected via arbityalding wires. At this
time, however, we are only permitting the use of componeiits defined, ratio-
nal clock relations. This approach therefore makes it pes$d connect compo-
nents where one is for example three times faster than tlee otltwo components
that have for example a clock ratio of 11:38 compared to thnoanication/-
global clock. The global clock is the fastest clock in thetegs We assume that
each process has a read phase and a write phase. In the readgpeocess reads
the value on its input signals and in the write phase, a psoaeises the value on
its output signal.

We modify two components of our LI system to refine it for a malbck
system. We extend our original Equalizer process to an Beriqualizer as
shown in definition 15. The Extended Equalizer has the in&diom of the clock
cycle of the actual process. Therefore, in the multi-clogg&tem, at most one
value is provided to the computational process during isl nghase by the Ex-
tended Equalizer. The process does its processing and writeephase writes a
value. This value is read by the Extended Splitter which igxended version
of the Splitter from the previous section. The Extendedt&plreads the value
from the main process during the write phase of the procaasse $he Extended
Splitter works on the global clock,are written at every write phase of the global
clock except when a value is read from the compuational gsocehe Extended
Equalizer will give the main process only one value duringngle read phase and
similarly, the Extended splitter will read only once duriagingle write phase of
the computational process. The formal description of thielcked Equalizer and

the Extended Splitter are given below:

15

Definition 15 An Extended Equalizer functiam, : (S x Ssw) — (S'x Sr") is defined

as:
fe(sla' o 7ST7S’W) = f(817 : 731717' o 717$’W717ne) Wherea
f(sl7"'JS"Iaila"'7in7S’W7k7m) =
if (37— (silij]) = 1) A (sw[k] = R) then
<T,...,T> @ Vect_ (exp(j))
) fe(sl,~-~,sq,VeC?:1 expe(j)),sw,k+1, ne
else |f(V'J1 1 (s,[i) # 1) A (sw[kl =R) A (m = ne) then
Vect, (silij]) © <F,....,F > @ f(s1,-,sn,Vect_(ij +1),5w.k+1, €
else if _; (sj[ij]) # 1) A (swlk| =R) A (m =) then
<T...,T>0O<F....F>&f(s,- ,squcf),Sw,K+1, €
else if(Vi_; (sjlij]) # r) A (Swlk] = W) then
f(s1, S, Vecf), Sw, K+ 1,ne)
The function f takes argumenig iy, - - -,ip to indexs;, S, - - -, S, and argument k

to index signals,y. me M where M ={e,ng is a set of 2 elements, where ‘e’
indicates an events has been processed and ‘ne’ indicatiesdtevent has been

processed. The formulation ekp, exp are given in Definition 7.

Definition 16 Extended n-Splittets, is a process p{Sx Sw) — S defined as

He(S,Sw) = h(X:1y,n, 1 Xw : Yrw, NE) Where,

h(x: 1y, N, i, Xw & Yew, M) =

if ((i=n) A Xw=W)A (m=ne))then f(x, n, i, D h(y, n, 1, yw, €

16

elseif (i< n) A (Xw =W) A (m=ne)) then{x, n, i, 1) @ h(y, n, i+1, yw, €)
elseif((i=n Vi<n) A (Xw=W)A (m=e))then Ky, n, i, Yw, €
else if(xw = R) then Hy, n, i, yw, ne)

Here,s=x::yandsw = Xw :: Yrw. Functionh takes an argumentgo index
then output signals andh to keep track of whether an event was processed. The

formulation ofg(n), f(x,n,i, j) are given in Definition 8.

Extended
Equalizer
Extended
n-Spliter

Extended
Equalizer

Extended
n-Spliter

Figure 6. Multi-clock LI Implementation

Figure 6 shows the multi-clock LI implementation of the gyst The main
processes run based on the local clocks, whereas, theaiceerdf the processes
run based on the local clocks. The basic blocks of the modalsame as shown
in the previous implementations. Each process has an EetieBEdualizer and
a Extended n-Splitter. In the case of no long interconnentshe output, the
Extended Splitter outputs the values on a single signahémrréad phase of each
process, the data is read from Extended Equalizer. In thiéngphase of the
process, the data is written on the signals read by the EgteSglitter. On long
interconnects, the Extended Splitter controls the writifilpe values on its signals

as described by Definition 16. Due to lack of space, we omitfanyal proofs
for latency equivalence in this case.

17

6 Verification of Protocols

To ensure that all members of this family of LIPs are funaitncorrect, we
check for their latency equivalence with a correspondimghyonous system. By
latency equivalence, we mean that all the values correspgimaol the same set of
informative events must be equal. We model the two systensilN and feed
the same sequence of tokens to the synchronous model asswbé &1 model,
and compare the output tokens to be equal. The setup foroativin of the two

systems is shown in Figure 7.

%\FLW}—» LIP Implementation

Comparator
= — S

Random
Generator

Figure 7. Latency Equivalence Checking of Synchronous dr&l/ktem

The figure illustrates a random generator giving the sameesexg of values
to both the systems. The corresponding processes of botsygtem perform
the same computation. The output of the systems is fed to dinep@rator. The
Comparator is a process that embeds an equalizer that takésputs from the
signals of the two implementations and has an assertioctieaks that the values
read are equal at every clock tick. This assertion ensueggtib values received
at the output are equal. Verification to check for the latezmyivalence was done
for LIP with relay station and synchronous model, LIP withoelay station and
components with same clock, and finally LIP without relaytistathat permit
the use of components with different clocks but with a knowotk ratio. For
verification of the latency equivalence for this LIP, vasgalifferent ratios for the

clocks were taken into account.

18

7 Conclusion and Future Work

We propose refinements over existing LIP implementations.simplify ex-
isting LIPs by eliminating the need for relay stations on tinclbck cycle inter-
connections. With our protocol designers can reuse IP coemts with different
clocks, therefore making it possible to mix IPs of differepeeds, thus extending
the repertoire of easily accessible components withouhésel of making costly
adaptations. While a LIP with different clock ratios stil&s not represent a real
GALS system, it might be, however, a very efficient refinem&e are working
on relaxing the assumption of known ratios of the clocks.

For cases where clock ratios are variable or not known aighercurrently
presented options will, however, not work. In order to aately represent these
systems we need to handle real GALS systems, with asynchsormmmunica-
tions. We are aware of this limitation and are currently vilogkon an extension
of this work to deal with these issues. In order to validate phesented proto-
cols we build examples as formal models and verify them with$PIN model
checker. We illustrate the theory for the protocols withnfial definitions and

proof sketches.

References

[1] Carloni, L., McMillan, K., Saldanha, A., Sangiovanninéentelli, A.. A
methodology for correct-by-construction latency insawsidesign. In: In

Proc. International Conf. Computer Aided Verification. 999 309-315

[2] Carloni, L., McMillan, K., Sangiovanni-Vincentelli, A The theory of
lantency insensitive design. IEEE Transactions on CompAitied Design
of Integrated Circuits and Syste?® (2001) 1059-1076

[3] Carloni, L., McMillan, K.L., Sangiovanni-VincentelliA.L.: Latency insen-
sitive protocols. In: 11th International Conference on @ater-Aided Veri-

fication. Volume 1633., Trento, Italy, Springer Verlag (99223-133

19

[4]

[5]

[6]
[7]

[8]

Singh, M., Theobald, M.: Generalized latency-insausisystems for single-
clock and multi-clock architectures. In: Design, Autoroatand Test in Eu-
rope (DATE’04). (2004)

Casu, M., Macchiarulo, L.: A new approach to latency ms@ve design. In:

Design Automation Conference. (2004)
Holzmann, G.: The SPIN Model Checker. Addison Wesley0&0

Jantsch, A.: Modeling Embedded Systems and SOCs - Cosmoey and Time

in Models of Computation. Morgan Kaufmann (2001)

Rushby, J.: Formal verification of mcmillan’s composital assume-

guarantee rule. Technical report, SRI International (2001

20

