
F E R M A T
 Formal Engineering Research using

Methods, Abstractions and Transformations

Technical Report No: 2005-02

Abstract -- With increasing clock frequencies
in the gigahertz ranges, the distance signals
travel during one clock cycle decreases, making
a synchronous clock routing throughout the chip
impossible. Therefore, interconnect latency
needs to be tolerated, and in IP based design
various synchronous logic blocks need to be
connected via long interconnects that have
communication delays of multiple clock cycles.
Sometimes two communicating IPs also belong
to different clock domains, making their
interaction difficult to implement. Latency
insensitive protocols were introduced for cases
when the interconnect delay was the main
concern but the IPs were under same clock
domain. Here we generalize the issue of solving
the problem of long interconnects in between
IPs for a single-clock domain as well as for a
multi-clock domain. We also use a formal
verification strategy for making sure that as we
gradually refine our protocol, we do not become
functionally inequivalent to the original
synchronous reference design.

Presentation and Formal Verification
of a Family of Protocols for Latency

Insensitive Design

Syed Suhaib, David Berner, Deepak Mathaikutty,
Jean-Pierre Talpin, Sandeep Shukla

{ssuhaib,damathai,shukla}@vt.edu

{david.berner,talpin}@irisa.fr

Presentation and Formal Verification of a Family of
Protocols for Latency Insensitive Design

Syed Suhaib, David Berner, Deepak Mathaikutty,
Jean-Pierre Talpin, Sandeep Kumar Shukla

Virgina Tech, USA
INRIA, France

{ssuhaib,damathai,shukla}@vt.edu
{dberner,talpin}@irisa.fr

i

Contents

1 Introduction 2
1.1 Main Contributions . 3

2 Related Work 3

3 Preliminary Definitions & Notations 5
3.1 SPIN . 6

4 Protocol Details and Implementation 7
4.1 Carloni’s Latency Insensitive Protocol 7

5 Our Approach 10
5.1 Eliminating Relay Stations . 10
5.2 Multi-Clock . 15

6 Verification of Protocols 18

7 Conclusion and Future Work 19

List of Figures

1 Equalizer Example . 8
2 LI system as proposed by Carloni 9
3 Refinement . 12
4 LI system with Bridge . 13
5 LI and Synchronous model . 14
6 Multi-clock LI Implementation 17
7 Latency Equivalence Checking of Synchronous and LI System. . 18

List of Tables

ii

Abstract

With increasing clock frequencies in the gigahertz ranges,the distance sig-

nals travel during one clock cycle decreases, making a synchronous clock routing

throughout the chip impossible. Therefore, interconnect latency needs to be tol-

erated, and in IP based design various synchronous logic blocks need to be con-

nected via long interconnects that have communication delays of multiple clock

cycles. Sometimes two communicating IPs also belong to different clock domains,

making their interaction difficult to implement. Latency insensitive protocols were

introduced for cases when the interconnect delay was the main concern but the

IPs were under same clock domain. Here we generalize the issue of solving the

problem of long interconnects in between IPs for a single-clock domain as well

as for a multi-clock domain. We also use a formal verificationstrategy for mak-

ing sure that as we gradually refine our protocol, we do not become functionally

inequivalent to the original synchronous reference design.

1

1 Introduction

In the current System-on-chip(SoC) based design, reduced time-to-market de-

mands efficient reuse of complex components. This has led to the idea of de-

veloping libraries of Intellectual Properties (IP)s or reusable components. The

integration of such complex IPs on SoC and communication between them has

shifted the performance bottleneck of the system from computation to commu-

nication. With clock frequencies of these IPs in the multiple gigahertz range,

and the interconnection distances staying almost constantwith the chip size, we

have hit the limit, where the signal propagation distance during one clock cycle

is shorter than the longest wire. The solution is to distinguish short interconnects

from long interconnects, and use the long interconnects preferably on low traffic

inter-component communication. Intelligent repeaters [1, 2, 3] on their intercon-

nects make sure that no value sent through them are lost. Thisapproach is known

asLatency Insensitive design. The idea is to create a design from a specification

without assuming any latency in the interconnects, such that the resulting design

is latency equivalent to the specification. Informally, latency equivalence means

that given same input signals, the output signals have the same ordering of events

except for interspersed absent events. Formal definition ofthis follows in the later

sections.

While this is solving the fundamental problem, there are still issues that make

the application unsatisfactory or at least inconvenient. (i) these repeaters or re-

lay stations are additional components that have to be placed on the floor plan,

and consequently require changes in the original placementand routing. Several

iterations of a lengthy process may be necessary in order to reach a state where

all timing constraints are met. (ii) in such a completely synchronous design all

components have to run the same clock frequency. Reusing IPsfrom different ori-

gins however often imply that these IPs are designed to run atvarying frequency

ranges. Furthermore, only a few components have to run with the fastest clock,

others could run at a much slower clock, while still meeting all their performance

2

constraints.

In this paper, we illustrate a technique with an example to show how to succes-

sively eliminate these two constraints, reducing overheadcaused to the designer

in terms of design time, while at the same time leaving them more room in their

power budget. In the first step, we show how to get rid of the relay stations, by

putting some small extra intelligence into the component interface. In the next

step, we show an extension of these interfaces that allow forcomponents to have

different clocks, but are defined rational clock relations.Both of these improve-

ments can be done systematically, while minimizing changesin the actual com-

ponent and therefore eliminating additional sources of errors. We employ formal

verification as our strategy for ensuring that as we gradually refine our protocols,

we maintain functional equivalence to the original intent of the latency insensitive

design.

1.1 Main Contributions

The main contributions of this paper are as follows:

• Formal modeling and validation of existing latency insensitive protocols [3].

• New refinement-based approach to single-clock latency insensitive systems.

• Formal modeling and validation of our new approach.

• New approach to latency insensitive systems for multi-clock systems.

• Formal modeling and validation of the multi-clock latency insensitive sys-

tem.

2 Related Work

Latency insensitive protocols (LIP) for systems with long interconnection de-

lays (i.e. greater than one clock cycle) were proposed by Carloni et al [1, 2, 3]

for single-clock SoCs. All processes with long interconnects are encapsulated in a

3

wrapper to derive a process that is latency equivalent to theactual process, without

having to modify the internals of the original IP. Relay stations are added along

the long interconnection wires like repeaters for successful data transfer. They

contain at least two registers and a small control logic. Theinsertion of these

relay stations increases the number of elements to route andrequires additional

space on the chip for placement. Once it is determined where relay stations have

to be added based on the length of the wires, placement and routing of the entire

chip design now including the relay stations have to be redone. Several iterations

for placement and routing are needed in order to get a configuration that satisfies

all interconnection constraints.

All components of such latency insensitive (LI) designs areassumed to oper-

ate with the same clock. Singh and Theobald generalize the LItheory for GALS

systems [4]. In their approach, complex FSMs control all input and output sig-

nals. The communication network is implemented as an asynchronous system to

connect modules with different clocks. Overall this approach is associated with

heavy penalties in terms of implementation costs and performance.

Casu and Macchiarulo show how to reduce chip area compared toCarloni’s

approach [5]. They use a smart scheduling algorithm for the functional block acti-

vation and substitute the relay stations with simple flip-flops. One disadvantage of

this approach is that the schedule has to be computed a prioriand depends on the

computation in the process. If any change is made in any process, it may result in

change of flow of tokens. In this case, the schedule has to be recalculated which

is an expensive procedure.

In our approach, we do not face the problem of implementing complex FSMs,

asynchronous communication protocols, or scheduling computations. Instead we

propose to solve the latency problem without using relay stations along the wires.

We also generalize the solution for multi-clock systems where communication is

done based on a global/communication clock and the process interfaces bridge

the global and the local clock to ensure correct functionality of the processes.

4

We formally model the family of protocols that we propose andverify them for

latency equivalence with a corresponding synchronous system.

3 Preliminary Definitions & Notations

Let V be the set of data values and, T be a countable set of time stamps. Unless

otherwise specified, in this paper, we assume T =N = set of natural numbers. An

evente∈ V ×T is an occurrence of a data value with a particular time stamp.

However in the systems, we consider, a special event calledabsent eventdenoted

by τ may occur1. Therefore the set of all events is denoted by E, whereτ ∈ E and

for all other e∈ E e∈ V × T. When e∈ V × T it e is called aninformative event.

A signals is defined to be a sequence of events, often denoted ase1e2e3 · · ·en · · ·

(a signal is possibly infinite) whereei ∈ E.

For the preliminary definitions, if s is a signal, s[i] denotes theith event, hence

either s[i]∈ V ×T or s[i] = τ. The set of all signals is denoted by S. We also

distinguish from all signals in the system, some special kind of signals, like the

Stall signalsandControl signals. A stall signalst is a sequence of boolean events,

i.e.,st [i] ∈ Bool×T The set of all stall signals is denoted byST . A control signal

srw is a sequence of events from{R,W}×T set, i.e.,srw ∈ {R,W}×T. The set

of all control signals is denoted bySRW. In our system, IPs are hardware modules

that map input signals to output signals, therefore in this paper we refer to them as

processes. A process p is a functionSn −→ Sm where n, m are natural numbers.

In the rest of this section, we define a few terms and notationsthat are used

throughout the paper.

Definition 1 Given two tuples of m and n elements,
J

creates a tuple of m+n

elements.

< a1,a2, . . . ,an >
J

< b1,b2, . . . ,bm > = < a1,a2, . . . ,an,b1,b2, . . . ,bm >

Definition 2 Given two tuples of n events and n signals respectively,
L

creates a

1It may be caused due to lack of valid data in the producer or theconsumer’s request to delay
a transmission

5

tuple of n signals with the n events appended to the n signals.

< e1,e2, . . . ,en >
L

< s1,s2, . . . ,sn > = < e1⊕ s1,e2⊕ s2, . . . ,en⊕ sn > where

e1⊕s1 = s′′ is a signal such that s′′1 = e1s1

Definition 3 Let p1 and p2 be two processes where, p1 : S→ S and p2 : S→ S

then p2◦ p1(s) = s′ is called a composition.

Definition 4 Vectni=1(exp(i)) = <exp(1),exp(2),· · ·,exp(n)> where, exp(i) is an ex-

pression s.t. exp(k) is a textual replacement of i by k.

Definition 5 Let functionF : S→ S be defined as,F (s) = f(s,1,n) where,

f (s, i,n) =

f (s, i +1,n), i f s[i] = τ

s[i], i f (i = n)

s[i]⊕ f (s, i +1,n), otherwise

F takes a signal as input and outputs a signal dropping allτ events, but preserving

all informative events. If s is infinite, then the above definition changes slightly.

Definition 6 Latency Equivalence:Two signals s1 and s2 are said to be latency

equivalent, s1 ≡e s2 ⇔ F (s1) = F (s2). If the output signals of two systems are

latency equivalent given the same input signals, then thesesystems are said to be

latency equivalent.

3.1 SPIN

SPIN [6] is a model checker used extensively for formal verification of sys-

tems. SPIN is used to trace logical design errors and to checkthe consistency of

the specification. Its basic building blocks include asynchronous processes, mes-

sage channels, synchronizing statements, and structured data. We use these basic

blocks to write synchronous models. The communication is done through global

variables. Since the processes run asynchronously in SPIN,we synchronize the

execution of all processes with a central clock controller in order to make our

6

model behave like a synchronous system. The execution of each component de-

pends on a flag set by the clock controller, which is reset by the component at the

end of its execution. After which the clock controller waitsfor all components to

finish execution before it starts the next cycle. As in a real synchronous system,

the duration of a cycle (i.e. the maximum system frequency) is determined by the

slowest component.

4 Protocol Details and Implementation

4.1 Carloni’s Latency Insensitive Protocol

In the LI approach of Carloni et al each process is encapsulated in a wrapper

(called “shell”) that is forming the interface to other shells. Logic blocks called

relay stations are placed along the wires that are longer than the signal propagation

distance during one clock cycle. These relay stations work as pipeline blocks to

send data from one shell to another over a long wire. The shellreads all incoming

values, filters out empty events, and feeds the process with valid input events.

If any input signal does not have a data available, the process is stalled until all

input signals are present. When the process completes computation, the shell

writes events to the output wires, but only if the respectiveconnected component

is accepting events.

We present our LI systems based on this approach. So first we made a formal

model of the Carloni LIP (Figure 2). In this implementation we put all functional-

ity of the wrapper into anequalizerprocess. An equalizer is modeled such that it

reads all the input events from the incoming signals. An input is considered only

when it is associated with an informative event. The equalizer is only forwarding

data when all its input signals provide informative events.If an input signal sends

an absent event in one cycle, the equalizer sends a stall signal via a feedback to all

processes that had sent an informative event and it suspendsthe execution of other

processes. When the process itself is disabled by its equalizer, it is producingτ

events at its outputs, therefore causing the components before to wait until it can

7

resume operation. Formal definition of the equalizer is given below:

Definition 7 An Equalizer functionE : Sn −→ (Sn×ST
n) is defined as:

E (s1, · · · ,sn) = f(s1, · · · ,sn,1,1, · · · ,1) where,

f(s1, · · · ,sn, i1, i2, · · · , in) =

if(∃n
j=1 (sj [i j]) = τ)

then

< τ,τ, . . . ,τ >
J

Vectnj=1(exp1(j))
L

f(s1, · · · ,sn,Vectnj=1(exp2(j)))

else

Vectnj=1 (sj [i j])
J

< F, . . . ,F >
L

f (s1, · · · ,sn,Vectnj=1(i j +1))

exp1(j) : if (sj [i j]) = τ then F else T

exp2(j) : if (sj [i j]) = τ then ij +1 else ij

The function f takes arguments i1, i2, · · · , in to index s1,s2, · · · ,sn to access the respective

events.

Let us consider an example of an equalizer and three processes: A, B, C (shown in

Figure 1). Each of the processes connect to the equalizer with signals{s1, s2, s3}.

Also the equalizer outputs stall signalsstallA, stallB, stallC to the respective pro-

cesses. Let us assume that processes B and C produce informative events whereas

process A outputs an absent event. In this scenario, the equalizer will set stallB

andstallC signals to stall the processes B and C in the next cycle and output absent

A

C

B

s1

s2

s3

s’1

s’2

s’3

Equalizer

stall
A

stall
B

stallC

Figure 1. Equalizer Example

8

events ons′1, s′2, s′3. Once it receives an informative event ons1, it will remove the

stalls that were set and produce the corresponding outputs.The equalizer modeled

in the LI implementation also consists of a stall signal generator that connects to

the main process. An example of this LI approach is shown in Figure 2. In the

example, there are two processesP andQ that are encapsulated in wrappers. A

random generator produces random informative events and sends them to the shell

of processP. The shell reads the data from its inputs and performs some compu-

tation and sends an output toQ via a relay station. In this example, the process

Q simply prints the data it reads and is forwarding it to its output. The setup is

as follows:EqPandEqQare the equalizers of the corresponding processes. The

global clock is connected to all the processes. There is a delay of two cycles on the

interconnection between shellP and shellQ. Therefore, one relay station is placed

on the interconnect to permit successful transfer of data from processP to process

Q. The solid arrows denote the transfer of values where as the dotted lines denote

the transmission of events. Each process has enable signalsset at the next process

station because if a process is not ready to accept data, it can disable the previous

processes to stop them from producing more tokens. This feedback mechanism

is preventing the usage of infinite buffers. Note that we assume that processes

considered here are functions and hence deterministic and they are monotonic as

well [7]

Clock

PEqP QEqQ
Relay

Station

Figure 2. LI system as proposed by Carloni

9

5 Our Approach

5.1 Eliminating Relay Stations

First step to generalize the original LI approach is to eliminate the need for

relay stations. There are several advantages to this. Firstof all, we reduce the

number of elements in the system, which simplifies routing and placement. Also,

we reduce the process of re-iterating over the routing and placement after estimat-

ing the actual delays since we do not have to insert new components in between

wires for long interconnections.

The basic idea of our approach is that if a event between two components

takes two clock cycles, we only send one value every second clock cycle thereby

adapting the communication speed between components to their distance. An

outgoing interface takes care of this restriction, and stalls the sending component

whenever it delivers values too fast.

While this eliminates all relay stations, it however slows down the system

significantly due to an increasing number of stalls. We eliminate this slowdown

by additional communication lines. The number of interconnects needed depend

on the interconnect delay. For example, if there is an interconnect delay ofn

cycles, thenn interconnects are placed in-between the processes. Note that in

most cases n is in the range of 2 or 3. These additional wires anextra cost, but in

modern processes it is not very expensive to add parallel wires. Only in rare cases

of very sparse communication does it make sense to use a LI implementation for

more than three cycle distances, since stalling is bound to slow down the rest of

the system otherwise.

To ensure that the events are correctly transfers from one process to another

through long interconnects, we add extra interconnects that are bounded by asplit-

ter on the source and amergeron the sink. The splitter is implemented at the

output of a process, and it transfers events on the corresponding interconnect. The

splitter only puts one event on one of the output interconnects andτs are placed

10

on the rest of the signals at a particular time stamp.

Definition 8 n-SplitterH is a process, s.t.,H (s) = (s′1,s
′
2, . . . ,s

′
n) where

(s′1,s
′
2, . . . ,s

′
n) = h(x :: y,n,1) and,

g(n) =

τ, i f n = 1

τ
J

g(n−1), otherwise

f (x,n, i, j) =

x
J

g(n− j), i f i = 1

τ
J

f (x,n, i −1, j +1), otherwise

h(x :: y,n, i) =

f (x,n, i,1)
L

h(y,n,1), i f i = n

f (x,n, i,1)
L

h(y,n, i +1), otherwise

Here, s= x :: y means that x is the first event of the signal s and y is rest of the signal.

On contrary to the splitter, we implement amergerthat reads the correspond-

ing events from these interconnects based on the placement of events by the split-

ter. We fomalize the splitter below and also state the lemma about the composition

of the splitter and the merger. There is a splitter-merger combination for each long

interconnect in our LI implementation and we call this composition a bridge.

Definition 9 MergerM is a process, s.t.M (s1,s2, . . . ,sn) = s′ where

s′ = g((x1 :: y1,x2 :: y2, . . . ,xn :: yn), n, 1) and,

f (x :: y,n, i) =

x, i f i = n

f (y,n, i +1), otherwise

g((x1 :: y1,x2 :: y2, . . . ,xn :: yn),n, i) =

f ((x1,x2, . . . ,xn),n, i)⊕

g((y1,y2, . . . ,yn),n,1), i = n

f ((x1,x2, . . . ,xn),n, i)⊕

g((y1,y2, . . . ,yn),n, i +1), otherwise

s1 = x1 :: y1, s2 = x2 :: y2, · · · sn = xn :: yn,

11

Definition 10 If M ◦H (s) = s′′, thenF (s) = F (s′′)

proof sketch: From Definition 8, when the n-splitter is given an input signal s,

the n output signals are as follows:

s′1 = e1τn−1en+1τn−1e2n+1τn−1 . . .

s′2 = τe2τn−1en+2τn−1e2n+2τn−1 . . .

s′3 = ττe3τn−1en+3τn−1e2n+3τn−1
. . .

...

s′n = τn−1enτn−1e2nτn−1e3nτn−1
. . .

From Definition 9, when the merger is given the n output signals of the splitter

(s′1,s
′
2, . . . ,s

′
n) as input. If the resultant output signal is s′′ thenF (s) = F (s′′).

Definition 11 A BridgeB is single-input, single-output process p, built by se-

quentially composing a Splitter and a Merger (H -M), where p(s) = s′ and s′ =

M ◦H(s).

P Q

P Q
Eq
P

Eq
Q

P Q
Eq
P

Eq
Q

Bridge

Process Refinement

Interconnect Refinement

s
1 s’

s2

Shell 2Shell 1

s’’’s8s6

s
2

s1

s’’s
6s2

s1

s
3

s
1

s
5

s4

s
7

s5

s4

s9

Figure 3. Refinement

In definition 12, we define our two-step refinement process fora single-clock

LI composition.

Definition 12 Single Clock LI Composition: Given a single clock systemΠs

with N synchronous processes, m input signals and n outputs signals, we define a

k-delayed LI composition with the following steps:

12

Step 1 (Process Refinement): Every process p∈ Π is encapsulated into a shell

by sequentially composing them with an equalizerE .

Step 2 (Interconnect Refinement): Every k-delayed interconnect is refined by

introducing a bridge between the source and the sink of the interconnect.

The refinement process is shown in Figure 3 with two processesP andQ. s1,s2

are inputs to the processP. s3 is a long interconnect that connects processP andQ

ands′ is the output ofQ. At the first step, the processes are encapsulated in a shell

which is done by composing each process with an Equalizer. Inthe next step, the

long interconnects3 is refined with the bridge as described in definition 11.

Definition 13 The shell encapsulation of process P is latency equivalent to the

output of Process P for any given input signal.

Proof sketch: Follows from [1] and Definition 7.

Figure 4 shows the structure of this implementation based onthe previous example

in section 4.1. Each component still has an equalizer for theinputs, however on the

output side, long interconnects are connected by the bridge. The throughput of the

system is exactly the same as the throughput of a system with relay stations. Let us

Clock

EqP EqQ

2
cycle
delay

Sp
litt

er

P

Me
rg

er

Q

Figure 4. LI system with Bridge

consider two systems:Π andΠ′ as shown in Figure 5.Π is a synchronous system

with two processesP andQ. P has two input signals,s1 ands4 and an output

signals2. In Π, the interconnect has no latency and hence,s2 ands3 are same

signals input to processQ. Q gives an outputsand another signals4 to processP.

Π′ is the LI implementation of the synchronous modelΠ with processesP′ andQ′

13

which are encapsulations ofP andQ of Π [1]. Π′ has a bridge in-between process

P′ andQ′ as defined in definition 11. The signals ofΠ′ are connected similar to

systemΠ. s1 = s′1 are the input signals to both the systems.

Figure 5. LI and Synchronous model

Theorem 14 Two systemsΠ,Π′ are latency equivalent.

Proof sketch: We use circular reasoning [8] to show the prove sketch. Ini-

tially, all signals are latency equivalent. When the first informative event enters

the system ats1,s′1, the corresponding event at the output ofP andP′ are same

assuming that a valid event is present ats4 ands′4. Therefore, from Lemma 13,

F (s2) = F (s′2) after the first informative event is processed by bothP, P′. Also

s2 = s3 in systemΠ since they are the same signal, and we know from definition 11

and lemma 10 thatF (s′2) = F (s′3). Similarly, for processesQ,Q′, F (s3) = F (s′3)

at the first informative event. Therefore, at the output ofQ,Q′, F (s4) = F (s′4) at

the first event. At everytth informative event ons2,s′2, the value will depend on

thet−1th event ofs4,s′4 which will be same. Therefore, event ons2,s′2 will always

be the same attth event and hence,F (s2) = F (s′2) will always be true aftertth

informative events from the input. The same can be said for the output ofQ,Q′.

Therefore, all the signals will be latency equivalent aftert informative events are

processed. Hence, the two systems are latency equivalent.

14

5.2 Multi-Clock

An LI system as defined by Carloni is still a synchronous system where all

components are connected to the same clock and work with the same speed. We

generalize this definition towards a multi-clock implementation where we allow

components with different clocks connected via arbitrarily long wires. At this

time, however, we are only permitting the use of components with defined, ratio-

nal clock relations. This approach therefore makes it possible to connect compo-

nents where one is for example three times faster than the other or two components

that have for example a clock ratio of 11:38 compared to the communication/-

global clock. The global clock is the fastest clock in the system. We assume that

each process has a read phase and a write phase. In the read phase, a process reads

the value on its input signals and in the write phase, a process writes the value on

its output signal.

We modify two components of our LI system to refine it for a multi-clock

system. We extend our original Equalizer process to an Extended Equalizer as

shown in definition 15. The Extended Equalizer has the information of the clock

cycle of the actual process. Therefore, in the multi-clock system, at most one

value is provided to the computational process during its read phase by the Ex-

tended Equalizer. The process does its processing and in thewrite phase writes a

value. This value is read by the Extended Splitter which is anextended version

of the Splitter from the previous section. The Extended Splitter reads the value

from the main process during the write phase of the process. Since the Extended

Splitter works on the global clock,τ are written at every write phase of the global

clock except when a value is read from the compuational process. The Extended

Equalizer will give the main process only one value during a single read phase and

similarly, the Extended splitter will read only once duringa single write phase of

the computational process. The formal description of the Extended Equalizer and

the Extended Splitter are given below:

15

Definition 15 An Extended Equalizer functionEe : (Sn×SRW)−→ (Sn×ST
n) is defined

as:

Ee(s1, · · · ,sn,srw) = f(s1, · · · ,sn,1, · · · ,1,srw,1,ne) where,

f(s1, · · · ,sn, i1, · · · , in,srw,k,m) =

if (∃n
j=1 (sj [i j]) = τ) ∧ (srw[k] = R) then

< τ, . . . ,τ >
J

Vectnj=1(exp1(j))
L

Ee(s1, · · · ,sn,Vectnj=1(exp2(j)),srw,k+1, ne)

else if(∀n
j=1 (sj [i j]) 6= τ) ∧ (srw[k] = R) ∧ (m = ne) then

Vectnj=1 (sj [i j])
J

< F, . . . ,F >
L

f(s1, · · · ,sn,Vectnj=1(i j +1),srw,k+1, e)

else if (∀n
j=1 (sj [i j]) 6= τ) ∧ (srw[k] = R) ∧ (m = e) then

< τ, . . . ,τ >
J

< F, . . . ,F >
L

f(s1, · · · ,sn,Vectnj=1(i j),srw,k+1, e)

else if(∀n
j=1 (sj [i j]) 6= τ) ∧ (srw[k] = W) then

f(s1, · · · ,sn,Vectnj=1(i j),srw,k+1,ne)

The function f takes argumentsi1, i2, · · · , in to indexs1,s2, · · · ,sn and argument k

to index signalsrw. m∈ M where M ={e,ne} is a set of 2 elements, where ‘e’

indicates an events has been processed and ‘ne’ indicates that no event has been

processed. The formulation ofexp1,exp2 are given in Definition 7.

Definition 16 Extended n-SplitterH e is a process p:(S×SRW) −→ Sn defined as

He(s,srw) = h(x :: y,n,1,xrw :: yrw, ne) where,

h(x: : y, n, i, xrw :: yrw, m) =

if ((i = n) ∧ (xrw = W) ∧ (m = ne)) then f(x, n, i, 1)
L

h(y, n, 1, yrw, e)

16

else if ((i< n)∧ (xrw = W) ∧ (m = ne)) then f(x, n, i, 1)
L

h(y, n, i+1, yrw, e)

else if((i = n ∨ i < n) ∧ (xrw = W) ∧ (m = e)) then h(y, n, i, yrw, e)

else if(xrw = R) then h(y, n, i, yrw, ne)

Here,s= x :: y andsrw = xrw :: yrw. Functionh takes an argumentsi to index

then output signals andm to keep track of whether an event was processed. The

formulation ofg(n), f (x,n, i, j) are given in Definition 8.

Clock

2
cycle
delay

Ex
ten

de
d

n-S
pli

tte
r

P

Ex
ten

de
d

Eq
ua

lize
r

QMe
rge

r

m -
clock

n -
clock

Ex
ten

de
d

Eq
ua

lize
r

Ex
ten

de
d

n-S
pli

tte
r

Figure 6. Multi-clock LI Implementation

Figure 6 shows the multi-clock LI implementation of the system. The main

processes run based on the local clocks, whereas, the interfaces of the processes

run based on the local clocks. The basic blocks of the module are same as shown

in the previous implementations. Each process has an Extended Equalizer and

a Extended n-Splitter. In the case of no long interconnects on the output, the

Extended Splitter outputs the values on a single signal. In the read phase of each

process, the data is read from Extended Equalizer. In the writing phase of the

process, the data is written on the signals read by the Extended Splitter. On long

interconnects, the Extended Splitter controls the writingof the values on its signals

as described by Definition 16. Due to lack of space, we omit anyformal proofs

for latency equivalence in this case.

17

6 Verification of Protocols

To ensure that all members of this family of LIPs are functionally correct, we

check for their latency equivalence with a corresponding synchronous system. By

latency equivalence, we mean that all the values corresponding to the same set of

informative events must be equal. We model the two systems inSPIN and feed

the same sequence of tokens to the synchronous model as well as the LI model,

and compare the output tokens to be equal. The setup for verification of the two

systems is shown in Figure 7.

Random
Generator

Feeder LIP Implementation

P Q

Comparator

True

Figure 7. Latency Equivalence Checking of Synchronous and LI System

The figure illustrates a random generator giving the same sequence of values

to both the systems. The corresponding processes of both thesystem perform

the same computation. The output of the systems is fed to the Comparator. The

Comparator is a process that embeds an equalizer that takes the inputs from the

signals of the two implementations and has an assertion thatchecks that the values

read are equal at every clock tick. This assertion ensures that the values received

at the output are equal. Verification to check for the latencyequivalence was done

for LIP with relay station and synchronous model, LIP without relay station and

components with same clock, and finally LIP without relay station that permit

the use of components with different clocks but with a known clock ratio. For

verification of the latency equivalence for this LIP, various different ratios for the

clocks were taken into account.

18

7 Conclusion and Future Work

We propose refinements over existing LIP implementations. We simplify ex-

isting LIPs by eliminating the need for relay stations on multi clock cycle inter-

connections. With our protocol designers can reuse IP components with different

clocks, therefore making it possible to mix IPs of differentspeeds, thus extending

the repertoire of easily accessible components without theneed of making costly

adaptations. While a LIP with different clock ratios still does not represent a real

GALS system, it might be, however, a very efficient refinement. We are working

on relaxing the assumption of known ratios of the clocks.

For cases where clock ratios are variable or not known a priori the currently

presented options will, however, not work. In order to accurately represent these

systems we need to handle real GALS systems, with asynchronous communica-

tions. We are aware of this limitation and are currently working on an extension

of this work to deal with these issues. In order to validate the presented proto-

cols we build examples as formal models and verify them with the SPIN model

checker. We illustrate the theory for the protocols with formal definitions and

proof sketches.

References

[1] Carloni, L., McMillan, K., Saldanha, A., Sangiovanni-Vincentelli, A.: A

methodology for correct-by-construction latency insensitive design. In: In

Proc. International Conf. Computer Aided Verification. (1999) 309–315

[2] Carloni, L., McMillan, K., Sangiovanni-Vincentelli, A.: The theory of

lantency insensitive design. IEEE Transactions on Computer Aided Design

of Integrated Circuits and System20 (2001) 1059–1076

[3] Carloni, L., McMillan, K.L., Sangiovanni-Vincentelli, A.L.: Latency insen-

sitive protocols. In: 11th International Conference on Computer-Aided Veri-

fication. Volume 1633., Trento, Italy, Springer Verlag (1999) 123–133

19

[4] Singh, M., Theobald, M.: Generalized latency-insensitive systems for single-

clock and multi-clock architectures. In: Design, Automation and Test in Eu-

rope (DATE’04). (2004)

[5] Casu, M., Macchiarulo, L.: A new approach to latency insensitive design. In:

Design Automation Conference. (2004)

[6] Holzmann, G.: The SPIN Model Checker. Addison Wesley (2004)

[7] Jantsch, A.: Modeling Embedded Systems and SOCs - Concurrency and Time

in Models of Computation. Morgan Kaufmann (2001)

[8] Rushby, J.: Formal verification of mcmillan’s compositional assume-

guarantee rule. Technical report, SRI International (2001)

20

